求函數(shù)f(x)=x2-4x+1(x≥a)的值域.
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的性質(zhì)求解.需要分類討論.
解答: 解:f(x)=x2-4x+1=(x-2)2-3,對稱軸為x=2,
∴f(x)在(-∞,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
當(dāng)a<2時,函數(shù)在(a,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,函數(shù)有最小值,最小值為-3,故值域為[-3,+∞)
當(dāng)a≥2時,函數(shù)在[a,+∞)上單調(diào)遞增,函數(shù)有最小值,最小值為a2-4a+1,故值域為[a2-4a+1,+∞)
點評:本題考查函數(shù)的值域的求法,解題時要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,則與式子
b2+c2-a2
2bc
相等的是( 。
A、cosCB、cosB
C、cosAD、sinA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線f(x)=x2,g(x)=x2-2x以及直線x=1所圍成封閉圖形的面積為(  )
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
3
3-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象相鄰兩條對稱軸之間的距離為
π
2
,函數(shù)y=f(x+
π
2
)為偶函數(shù).
(1)求f(x)的解析式;
(2)若α為銳角,f(
α
2
+
π
12
)=
3
5
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)試分別將曲線Cl的極坐標(biāo)方程ρ=sinθ-cosθ和曲線C2的參數(shù)方程
x=sint-cost
y=sint+cost
(t為參數(shù))化為直角坐標(biāo)方程和普通方程:
(Ⅱ)若紅螞蟻和黑螞蟻分別在曲線Cl和曲線C2上爬行,求紅螞蟻和黑螞蟻之間的最大距離(視螞蟻為點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+2x-4y+3=0;
(1)若直線l與圓C相切,且在x軸和y軸上的截距相等,求直線l的方程.
(2)過點M(-1,1)的直線l1與圓C交于A,B兩點,線段AB中點為P;求P點軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)某種產(chǎn)品,固定成本為20000元,每生產(chǎn)一單位產(chǎn)品,成本增加100元,已知年總收益R與年產(chǎn)量x的關(guān)系是R(x)=
400x-
1
2
x2,0≤x≤400
80000,x>400.
則總利潤最大時.求每年的產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
6
2
2
4
+
6
4
).

查看答案和解析>>

同步練習(xí)冊答案