設(shè)f(n)=1+++ + (n∈N*).
求證:f(1)+f(2)+ +f(n-1)=n·[f(n)-1](n≥2,n∈N*).
應(yīng)用數(shù)學(xué)歸納法.
【解析】
試題分析:①當(dāng)n=2時(shí),左邊=f(1)=1,
右邊=2[1+-1]=1,
左邊=右邊,等式成立.
②假設(shè)n=k時(shí),結(jié)論成立,即
f(1)+f(2)+ +f(k-1)=k[f(k)-1],
那么,當(dāng)n=k+1時(shí),
f(1)+f(2)+ +f(k-1)+f(k)
=k[f(k)-1]+f(k)
=(k+1)f(k)-k
=(k+1)[f(k+1)-]-k
=(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1],
所以當(dāng)n=k+1時(shí)結(jié)論仍然成立.
所以f(1)+f(2)+ +f(n-1)=n[f(n)-1](n≥2,n∈N*).
考點(diǎn):本題主要考查數(shù)學(xué)歸納法。
點(diǎn)評(píng):中檔題,利用數(shù)學(xué)歸納法,注意遵循“兩步一結(jié)”。對(duì)數(shù)學(xué)式子變形能力要求較高。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(選修2-2) 2009-2010學(xué)年 第29期 總第185期 北師大課標(biāo) 題型:013
設(shè)f(n)=1+++…+(n∈N+),那么f(n+1)-f(n)=
+
+
++
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:大英中學(xué)2008屆高三年級(jí)第一次月考數(shù)學(xué)(理)試卷及答案 題型:044
數(shù)列{an}的通項(xiàng)公式,設(shè)f(n)=(1-a1)(1-a2)(1-a3)…(1-an)
(1)求f(1),f(2),f(3),f(4);
(2)猜想f(n)的計(jì)算公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江西省上饒市第五中學(xué)2010-2011學(xué)年高一下期中考試數(shù)學(xué)試題A卷 題型:022
設(shè)f(n)=1+++…+(n∈N+),是否存在g(n),使得等式f(1)+f(2)+f(3)+…+f(n)+n=g(n)f(n)總成立?若存在,請(qǐng)寫(xiě)出g(n)的通項(xiàng)公式(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由._________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)選修數(shù)學(xué)-4-5人教A版 人教A版 題型:013
(經(jīng)典回放)設(shè)f(n)=1+++…+(n∈N+),則f(n+1)-f(n)等于
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com