在四邊形ABCD中,
AC
=(1,1),
BD
=(-2,3),則該四邊形的面積為
 
考點:向量在幾何中的應(yīng)用
專題:平面向量及應(yīng)用
分析:畫出圖形,平行四邊形的面積轉(zhuǎn)化為4個三角形的面積,求出一個三角形的面積,即可求出結(jié)果.
解答: 解:如圖:由題意可知,平行四邊形ABCD的面積就是4個三角形的面積的和,4個三角形的面積相等,cos∠DOC=
AC
BD
|
AC
||
BD
|
=
1
2
13
=
26
26

sin∠DOC=
1-cos2∠DOC
=
5
26
26

SABCD=4×
1
2
×|
1
2
AC
||
1
2
BD
|sin∠DOC=
5
2

故答案為:
5
2
點評:本題考查向量在幾何中的應(yīng)用,向量的數(shù)量積以及三角形的面積的求法,考查轉(zhuǎn)化思想與計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC所在平面上的一點,若
PO
=
a
PA
+b
PB
+c
PC
a+b+c
(其中P是ABC所在平面內(nèi)任意一點),則O點是△ABC的(  )
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A、f(x)=log0.5x
B、f(x)=x3
C、f(x)=x-1
D、f(x)=-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不恒為零的函數(shù)f(x)對任意實數(shù)x,y滿足f(x+y)+f(x-y)=2f(x)+2f(y),則函數(shù)f(x)為
 
函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在正實數(shù)集上的函數(shù)f(x)滿足:f(2)=1,f(xy)=f(x)+f(y);當(dāng)x>y時,有f(x)>f(y).如果f(x)+f(x-3)≤2,試求x的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
同向,
b
=(1,2),
a
b
=10.
(1)求向量
a
的坐標;
(2)若
c
=(2,-1),求(
b
c
)•
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知a,b,c成等比數(shù)列,且cosB=
3
5

(1)求cosAcosC的值;
(2)求tanA+tanC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,-2,0)和
a
=(-3,4,12),求點B的坐標,使
AB
a
,且|AB|等于|
a
|的2倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=
x
在x0到x0+△x之間的平均變化率.

查看答案和解析>>

同步練習(xí)冊答案