函數(shù)f(x)=
lnx
x
(x>0)的單調(diào)遞增區(qū)間是
 
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的概念及應用
分析:求出函數(shù)f(x)=
lnx
x
的導數(shù)為y′的解析式,令y′>0 求得x的范圍,即可得到函數(shù)f(x)=
lnx
x
的單調(diào)遞增區(qū)間.
解答: 解:由于函數(shù)f(x)=
lnx
x
的導數(shù)為y′=
1-lnx
x2
,
令y′>0 可得 lnx<1,解得0<x<e,
故函數(shù)f(x)=
lnx
x
的單調(diào)遞增區(qū)間是 (0,e),
故答案為:(0,e).
點評:本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為[a,b],a<c<b,當x∈[a,c]時,f(x)是單調(diào)減函數(shù),當x∈[c,b]時,f(x)是單調(diào)增函數(shù),則下列說法正確的是
 

①f(x)的最大值為f(c);
②f(x)的最小值為f(c);
③f(x)有最小值但無最大值;
④f(x)既有最大值又有最小值;
⑤f(x)的最大值為f(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐A-ABCD中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,BC=2,CD=
2
,AB=AC.
(Ⅰ)證明:AD⊥CE;
(Ⅱ)若設(shè)AC=2,求二面角C-AD-E余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓E的中心在坐標原點O,焦點在x軸上,離心率為
3
3
,過點C(-1,0)的直線交橢圓E于A,B兩點,且
CA
=2
BC
,求當△AOB面積達到最大時的直線和橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和記為Sn,已知a10=17,a20=37.
(1)求通項an
(2)若sn=15,求n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A點在x軸上,B點在y軸上,且滿足|AB|=3,若
AC
=2
CB
,則點C的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求不等式
ax
x-3
>1(a∈R)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2

(1)求sin∠DAC;
(2)求AB的長.

查看答案和解析>>

同步練習冊答案