【題目】將三個數(shù),,給予適當?shù)木幣牛謩e取常用對數(shù)后成公差為1的等差數(shù)列,那么,此時______

【答案】

【解析】

設(shè)x=10a2+81a+207,y=a+2,z=26﹣2a.首先,由x0,y0,z0,知﹣2a13.

其次,判斷x,y,z的大小關(guān)系.

由于x﹣y=10a2+80a+205,其判別式恒小于0,因此x﹣y0,即xy; 同樣,x﹣

z=10a2+83a+181的判別式也恒小于0,故xz.此外,y﹣z=3(a﹣8),因當a=8時,y=z

合題意,所以分﹣2a88a13兩種情況討論.

(1)當﹣2a8.此時yz,lgy,lgz,lgx構(gòu)成公差為1的等差數(shù)列,所以lgx﹣lgz=lgz

﹣lgy=1.

x=10z,z=10y

10a2+81a+207=10(26﹣2a),26﹣2a=10(a+2).

a=(﹣2,8).

(2)8a13.此時yz,lgz,lgy,lgx構(gòu)成公差為1的等差數(shù)列,所以lgy﹣lgz=lgx﹣lgy=1.

y=10z,x=10y

a+2=10(26﹣2a),10a2+81a+207=10(a+2).

此時方程無解.因此只有a=合乎題意.

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,動點與兩定點連線的斜率之積為,記點的軌跡為曲線.

(1)求曲線的方程;

(2)若過點的直線與曲線交于兩點,曲線上是否存在點使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,中,,,若以,為焦點的雙曲線的漸近線經(jīng)過點,則該雙曲線的離心率為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知點是拋物線上一定點,直線的傾斜角互補,且與拋物線另交于,兩個不同的點.

(1)求點到其準線的距離;

(2)求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知點是拋物線上一定點,直線的傾斜角互補,且與拋物線另交于,兩個不同的點.

(1)求點到其準線的距離;

(2)求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了推進課堂改革,提高課堂效率,銀川一中引進了平板教學,開始推進智慧課堂改革.學校教務處為了了解我校高二年級同學平板使用情況,從高二年級923名同學中抽取50名同學進行調(diào)查.先用簡單隨機抽樣從923人中剔除23人,剩下的900人再按系統(tǒng)抽樣方法抽取50人,則在這923人中,每個人被抽取的可能性 ( )

A.都相等,且為B.不全相等C.都相等,且為D.都不相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左,右焦點分別為, ,離心率為, 是橢圓上的動點,當時, 的面積為.

(1)求橢圓的標準方程;

(2)若過點的直線交橢圓, 兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),.

(1)若對任意的,都有恒成立,試求m的取值范圍;

(2)用表示mn中的最小值,設(shè)函數(shù)),討論關(guān)于x的方程的實數(shù)解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),=0,(x1≠x2),|x2-x1min,f(x)=f(-x),將函數(shù)f(x)的圖象向左平移個單位長度得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是

A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)

C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)

查看答案和解析>>

同步練習冊答案