求和x+x2+…+xn

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+1,設(shè)g1(x)=f(x),gn(x)=f(gn-1(x))(n>1,n∈N*
(1)求g2(x),g3(x)的表達(dá)式,并猜想gn(x)(n∈N*)的表達(dá)式(直接寫出猜想結(jié)果)
(2)若關(guān)于x的函數(shù)y=x2+
n
i=1
gi(x)(n∈N*)
在區(qū)間(-∞,-1]上的最小值為6,求n的值.
(符號(hào)“
n
i=1
”表示求和,例如:
n
i=1
i=1+2+3+…+n
.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求和:(x+
1
y
)+(x2+
1
y2
)+…(xn+
1
yn
)
(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一段時(shí)間內(nèi),某種商品的價(jià)格x(萬元)和需求量Y(t)之間的一組數(shù)據(jù)為:
價(jià)格x 1.4 1.6 1.8 2 2.2
需求量Y 12 10 7 5 3
(1)在右面的坐標(biāo)系中畫出散點(diǎn)圖;

(2)求出Y對(duì)x的回歸直線方程 
y
=
a
+
b
x
;(其中:
b
=
n
i=1
xiyi-n 
.
x
.
y
  
n
i=1
xi2-n
.
x
2
,
a
.
y
b
.
x

參考數(shù)據(jù)1.42+1.62+1.82+22+2.22=16.6)
序號(hào)
1
2
3
4
5
求和
(3)回答下列問題:
(i)若價(jià)格定為1.9萬元,預(yù)測(cè)需求量大約是多少?(精確到0.01t)
(ii)當(dāng)價(jià)格定為多少時(shí),商品將出現(xiàn)滯銷?(精確到0.01萬元)
(iii)當(dāng)價(jià)格定為多少時(shí),獲得的收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省長葛市第三實(shí)驗(yàn)高中2011屆高三上學(xué)期第一次考試?yán)砜茢?shù)學(xué)試題 題型:044

已知函數(shù)f(x)=x+1,設(shè)g1(x)=f(x),gn(x)=f(gn-1(x))(n>1,n∈N*)

(1)求g2(x),g3(x)的表達(dá)式,并猜想gn(x)(n∈N*)的表達(dá)式(直接寫出猜想結(jié)果)

(2)若關(guān)于x的函數(shù)y=x2在區(qū)間(-∞,-1]上的最小值為6,求n的值.(符號(hào)“”表示求和,例如:=1+2+3+……+n)

查看答案和解析>>

同步練習(xí)冊(cè)答案