已知橢圓經過點,離心率為
(1)求橢圓C的方程:
(2)過點Q(1,0)的直線l與橢圓C相交于A、B兩點,點P(4,3),記直線PA,PB的斜率分別為k1,k2,當k1·k2最大時,求直線l的方程.

(1) .(2).

解析試題分析:(1) 由已知建立方程組 ①  ②, 即得解.
(2)兩種思路,一是討論①當直線的斜率為0,②當直線的斜率不為0的情況;二是討論①當直線垂直于x軸,②當直線與x軸不垂直的情況.兩種情況的不同之處在于,直線方程的靈活設出.
第一種思路可設直線的方程為, 第二種思路可設直線的方程為.兩種思路下,都需要聯(lián)立方程組,應用韋達定理,簡化解題過程.
本題是一道相當?shù)湫偷念}目.
試題解析:(1) 由已知可得,所以    ①               1分
又點在橢圓上,所以    ②               2分
由①②解之,得.
故橢圓的方程為.                                   4分
(2)解法一:①當直線的斜率為0時,則;       5分
②當直線的斜率不為0時,設,,直線的方程為,
代入,整理得.        7分
,                                 9分
,,
所以, 

                                 11分
,則
時即時,
時,
 或
當且僅當,即時, 取得最大值.               13分
由①②得,直線的方程為.                  14分
解法二:①當直線垂直于x軸時,則;
②當直線

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.

(1)求橢圓C的方程;
(2)求點P的坐標;
(3)設M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的右頂點為A(2,0),點P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點在拋物線上.
(1)若的三個頂點都在拋物線上,記三邊,所在直線的斜率分別為,,,求的值;
(2)若四邊形的四個頂點都在拋物線上,記四邊,,,所在直線的斜率分別為,,,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為,為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于、兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓)的右焦點為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設直線與橢圓相交于兩點,分別為線段的中點. 若坐標原點在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓:的離心率為,過橢圓右焦點的直線與橢圓交于點(點在第一象限).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知為橢圓的左頂點,平行于的直線與橢圓相交于兩點.判斷直線是否關于直線對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定橢圓,稱圓心在坐標原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標;
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓 的左、右焦點分別是、,是橢圓右準線上的一點,線段的垂直平分線過點.又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當離心率最小且時,求橢圓的方程。
(3)若直線相交于(2)中所求得的橢圓內的一點,且與這個橢圓交于、兩點,與這個橢圓交于、兩點。求四邊形ABCD面積的取值范圍。

查看答案和解析>>

同步練習冊答案