(2009•臺州一模)已知向量
a
,
b
的夾角為1200
|a|
=1,
|b|
=5
,則|3
a
-
b
|=( 。
分析:先利用兩個向量的數(shù)量積的定義求得
a
b
的值,再求得|3
a
-
b
|2,從而求得|3
a
-
b
|的值.
解答:解:由題意可得
a
b
=1×5×cos120°=-
5
2
,
由于|3
a
-
b
|2=9
a
2
-6
a
b
+
b
2
=9+15+25=49,
∴|3
a
-
b
|=7,
故選A.
點評:本題主要考查兩個向量的數(shù)量積的定義,求向量的模的方法,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知向量
a
=(sinx,1),
b
=(t,x),若函數(shù)f(x)=
a
b
在區(qū)間[0,
π
2
]上是增函數(shù),則實數(shù)t的取值范圍是
[-1,+∞)
[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知點(3,1)和原點(0,0)在直線3x-ay+1=0的兩側(cè),則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知z1=2+i,z2=1-3i,則復數(shù)
i+z2z1
的虛部為
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)根據(jù)右邊程序框圖,若輸出y的值是4,則輸入的實數(shù)x=
-2或1
-2或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知點B(0,t),點C(0,t-4)(其中0<t<4),直線PB、PC都是圓M:(x-1)2+y2=1的切線.
(Ⅰ)若△PBC面積等于6,求過點P的拋物線y2=2px(p>0)的方程;
(Ⅱ)若點P在y軸右邊,求△PBC面積的最小值.

查看答案和解析>>

同步練習冊答案