【題目】如圖甲,在直角梯形中,,,,,是的中點(diǎn),是與的交點(diǎn),將沿折起到的位置,如圖乙.
(Ⅰ)證明:平面;
(Ⅱ)若平面平面,求點(diǎn)到平面的距離.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
試題分析:(Ⅰ)由已知可得,所以欲證平面,只要證平面即可,即證且即可,由,,是的中點(diǎn),,可得,即,,可證結(jié)論成立;(Ⅱ)等體積法求距離,即設(shè)點(diǎn)到平面的距離為,由,求之即可.
試題解析: (Ⅰ)證明:在圖甲中,,,是的中點(diǎn),,
,…………(2分)
即在圖乙中,,.………(3分)
又,平面.……(4分)
,,
四邊形是平行四邊形,
,…………(5分)
平面.…(6分)
(Ⅱ)解:由已知,,平面平面,,
平面,,………(7分)
,又由(Ⅰ)知,平面,平面,
.
,.……(9分)
設(shè)到平面的距離為,且,,,
由得:,(11分)
,故到平面的距離為.…(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的上、下頂點(diǎn)分別為, ,右焦點(diǎn)為,點(diǎn)在橢圓上,且.
(1)若點(diǎn)坐標(biāo)為,求橢圓的方程;
(2)延長(zhǎng)交橢圓與點(diǎn),若直線的斜率是直線的斜率的3倍,求橢圓的離心率;
(3)是否存在橢圓,使直線平分線段?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=的a的值,并求此時(shí)函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校進(jìn)行體驗(yàn),現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機(jī)抽取50人進(jìn)行統(tǒng)計(jì)(已知這50個(gè)身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.
(1)補(bǔ)全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計(jì)這50位男生身高的中位數(shù);
(3)用分層抽樣的方法在身高為內(nèi)抽取一個(gè)容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
問題解決
如圖(1),將正方形紙片ABCD折疊,使點(diǎn)B落在CD邊上一點(diǎn)E(不與點(diǎn)C、D重合),壓平后得到折痕MN.當(dāng)時(shí),求的值.
類比歸納
在圖(1)中,若則的值等于 ;若則的值等于 ;若(n為整數(shù)),則的值等于 .(用含的式子表示)
聯(lián)系拓廣
如圖(2),將矩形紙片ABCD折疊,使點(diǎn)B落在CD邊上一點(diǎn)E(不與點(diǎn)C、D重合),壓平后得到折痕MN設(shè),則的值等
于 ▲ .(用含的式子表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓()的離心率是,過點(diǎn)(,)的動(dòng)直線與橢圓相交于,兩點(diǎn),當(dāng)直線平行于軸時(shí),直線被橢圓截得的線段長(zhǎng)為.
⑴求橢圓的方程:
⑵已知為橢圓的左端點(diǎn),問: 是否存在直線使得的面積為?若不存在,說明理由,若存在,求出直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程與直線的直角坐標(biāo)方程;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)的直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是, 是的中點(diǎn).
(1)求證: 平面;
(2)求二面角的大;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com