【題目】某大理石工廠初期花費(fèi)98萬元購買磨大理石刀具,第一年需要各種費(fèi)用12萬元,從第二年起,每年所需費(fèi)用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

(1)到第幾年末總利潤最大,最大值是多少?

(2)到第幾年末年平均利潤最大,最大值是多少?

【答案】(1)第年末總利潤最大,最大值是萬元;(2)第7年末平均利潤最大,最大值為12萬元.

【解析】試題分析:(1)由已知,根據(jù)總盈利=總收入-總投入,結(jié)合等差數(shù)列的前項(xiàng)和公式,即可得到總盈利關(guān)于年數(shù)的函數(shù)表達(dá)式.進(jìn)而根據(jù)二次函數(shù)的性質(zhì),得到結(jié)論.
(2)根據(jù)(1)中總盈利關(guān)于年數(shù)的函數(shù)表達(dá)式,根據(jù)年平均利潤為 ,結(jié)合基本不等式,即可得到年平均利潤最大值,及對應(yīng)的時(shí)間.

試題解析:

(1)設(shè)年后的總利潤為萬元,則,

所以到第年末總利潤最大,最大值是萬元.

2)年平均利潤為

當(dāng)且僅當(dāng)時(shí),即時(shí),上式取等號.

所以到第年末平均利潤最大,最大值是萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中的奇函數(shù)是(
A.f(x)=x+1
B.f(x)=3x2﹣1
C.f(x)=2(x+1)3﹣1
D.f(x)═﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a≠0,函數(shù)f(x)= ,若f(1﹣a)=f(1+a),則a的值為(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí), (萬元).當(dāng)年產(chǎn)量不小于80千件時(shí), (萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績實(shí)行“”的構(gòu)成模式,第一個(gè)“3”是語文、數(shù)學(xué)、外語,每門滿分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學(xué)生對物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體,從學(xué)生群體中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如下表:

(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;

(II)從所調(diào)查的50名學(xué)生中任選2名,記表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)將頻率視為概率,現(xiàn)從學(xué)生群體中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)已知是公差不為零的等差數(shù)列, ,成等比數(shù)列

1)求數(shù)列的通項(xiàng);

2)求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下圖中,四邊形 ABCD是等腰梯形, , M、交EF于點(diǎn)N , ,現(xiàn)將梯形ABCD沿EF折起,記折起后C、D且使,如圖示.

(Ⅰ)證明: 平面ABFE;,

(Ⅱ)若圖6中, ,求點(diǎn)M到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問卷調(diào)查,其中每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間超過3小時(shí)的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計(jì)

男生

26

24

50

女生

30

20

50

合計(jì)

56

44

100

(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有的把握認(rèn)為“古文迷”與性別有關(guān)?

(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);

(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

參考公式: ,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時(shí),ax2+bx+30的解集為R.

查看答案和解析>>

同步練習(xí)冊答案