解答:(1)解:當(dāng)a=1時(shí),f(x)=(x-1)e
x+1,f'(x)=xe
x--------------------------------------(2分)
當(dāng)f'(x)<0時(shí),x<0;當(dāng)f'(x)>0時(shí),x>0
所以函數(shù)f(x)的減區(qū)間是(-∞,0);增區(qū)間是(0,+∞)-------------------------(4分)
(2)證明:(。ゞ(x)=f'(x)=e
x(x-a+1)+(a-1),g'(x)=e
x(x-a+2)------------------(5分)
當(dāng)g'(x)<0時(shí),x<a-2;當(dāng)g'(x)>0時(shí),x>a-2
因?yàn)閍>2,所以函數(shù)g(x)在(0,a-2)上遞減;在(a-2,+∞)上遞增-----------------(7分)
又因?yàn)間(0)=0,g(a)=e
a+a-1>0,
所以在(0,+∞)上恰有一個(gè)x
0使得g(x
0)=0.--------------------------------------------------(9分)
(ⅱ)解:若a≤2,可得在x∈[0,2]時(shí),g(x)≥0,從而f(x)在[0,2]內(nèi)單調(diào)遞增,而f(0)=0,
∴f(x)≥f(0)=0,不符題意.-------------------------------------------------(10分)
∴a>2
由(ⅰ)知f(x)在(0,x
0)遞減,(x
0,+∞)遞增,
設(shè)f(x)在[0,2]上最大值為M,則M=max{f(0),f(2)},
若對(duì)任意的x∈[0,2],恒有f(x)≤0成立,則
,------------------------------------(13分)
由f(2)≤0得(2-a)e
2+2a-2+a≤0,∴
a≥=2+>2,
又f(0)=0,∴
a≥.---------------------------------------------------------(15分)