已知函數(shù)f(x)=ln(3+x)+ln(3-x).
(Ⅰ)求函數(shù)y=f(x)的定義域;
(Ⅱ)判斷函數(shù)y=f(x)的奇偶性;
(Ⅲ)若f(2m-1)<f(m),求m的取值范圍.
考點:指、對數(shù)不等式的解法,函數(shù)的定義域及其求法,函數(shù)奇偶性的判斷
專題:函數(shù)的性質及應用
分析:(Ⅰ)由
3+x>0
3-x>0
,求得x的范圍,可得函數(shù)y=f(x)定義域.
(Ⅱ)由于函數(shù)y=f(x)的定義域關于原點對稱.且滿足 f(-x)=f(x),可得函數(shù)y=f(x)為偶函數(shù).
(Ⅲ)化簡函數(shù)f(x)的解析式為lg(4-x2),結合函數(shù)的單調性可得,不等式f(m-2)<f(m)等價于|m|<|m-2|<2,由此求得m的范圍.
解答: 解:(Ⅰ)要使函數(shù)有意義,則
3+x>0
3-x>0
,解得-3<x<3,
故函數(shù)y=f(x)定義域為(-3,3).
(Ⅱ)由(Ⅰ)可知,函數(shù)y=f(x)的定義域為(-3,3),關于原點對稱.
對任意x∈(-3,3),則-x∈(-3,3),
∵f(-x)=lg(3-x)+lg(3+x)=f(x),
∴由函數(shù)奇偶性可知,函數(shù)y=f(x)為偶函數(shù).
(Ⅲ)∵函數(shù)f(x)=lg(3+x)+lg(3-x)=lg(9-x2),
由復合函數(shù)單調性判斷法則知,當0≤x<3時,函數(shù)y=f(x)為減函數(shù).
又函數(shù)y=f(x)為偶函數(shù),
∴不等式f(2m-1)<f(m),等價于|m|<|2m-1|<3,
解得-1<m<
1
3
或1<m<2.
點評:本題主要考查求函數(shù)的定義域,函數(shù)的奇偶性的判斷,復合函數(shù)的單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b,c是實數(shù),則下列結論中一定正確的是( 。
A、若a>b,則ac>bc
B、若a>b,則a-c<b-c
C、若ac>bc,則a>b
D、若a>|b|,則a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,線段AD1、B1C所在直線的位置關系是( 。
A、平行B、相交且垂直
C、異面但不垂直D、異面且垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間中,與向量
a
=(3,0,-4)共線的單位向量
e
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(
1
2
x-cosx在區(qū)間[0,2π]上的零點個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一束光線l自A(-3,3)發(fā)出,射到x軸上,被x軸反射到⊙C:x2+y2-4x-4y+7=0上,當反射線通過圓心C時,光線l的方程
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21.7,22.3](單位:cm)之間,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:

(1)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你是否有95%的把握認為選擇不同的工藝與生產(chǎn)出一等品有關?
甲工藝乙工藝合計
一等品
非一等品
合計
P(K2≥k00.050.01
k03.8416.635
(2)若一等品、二等品、三等品的單件利潤分別為30元、20元、15元,求出上述甲工藝所抽取的100件產(chǎn)品的單件利潤的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“若方程
x2
4
+
y2
2-m
=1表示雙曲線”;命題q:“關于x的方程x2+4x+m=0有實數(shù)根”.若“p或q”為真命題,“p且q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)a=3+2i,b=4+mi,要使復數(shù)
a
b
為純虛數(shù),則實數(shù)m的值為( 。
A、-6
B、6
C、
8
3
D、-
8
3

查看答案和解析>>

同步練習冊答案