【題目】已知離心率為的橢圓經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)薦橢圓的右焦點(diǎn)為,過點(diǎn)的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請(qǐng)問的面積是否為定值?若是,求出此定值;若不是,請(qǐng)說明理由.
【答案】(1);(2)是,
【解析】
(1)根據(jù)及可得,再將點(diǎn)代入橢圓的方程與聯(lián)立解出,即可求出橢圓的方程;
(2) 可設(shè)所在直線的方程為,,,,將直線的方程與橢圓的方程聯(lián)立,用根與系數(shù)的關(guān)系求出,然后將直線、、的斜率、、分別用表示,利用可求出,從而可確定點(diǎn)恒在一條直線上,結(jié)合圖形即可求出的面積.
(1)因?yàn)闄E圓的離心率為,所以,即,
又,所以,①
因?yàn)辄c(diǎn)在橢圓上,所以,②
由①②解得,所以橢圓C的方程為.
(1)可知,,可設(shè)所在直線的方程為,
由,得,
設(shè),,,則,,
設(shè)直線、、的斜率分別為、、,
因?yàn)?/span>三點(diǎn)共線,所以,即,
所以,
又,
因?yàn)橹本、、的斜率成等差數(shù)列,所以,
即,化簡(jiǎn)得,即點(diǎn)恒在一條直線上,
又因?yàn)橹本方程為,且,
所以是定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊、貼春聯(lián)、掛燈籠等方式來表達(dá)對(duì)新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動(dòng),顧客凡購(gòu)物金額滿50元,則可以從“!弊、春聯(lián)和燈籠這三類禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類相同的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點(diǎn)O,其右焦點(diǎn)為,且點(diǎn)在橢圓C上.
求橢圓C的方程;
設(shè)橢圓的左、右頂點(diǎn)分別為A、B,M是橢圓上異于A,B的任意一點(diǎn),直線MF交橢圓C于另一點(diǎn)N,直線MB交直線于Q點(diǎn),求證:A,N,Q三點(diǎn)在同一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)購(gòu)平臺(tái)為了解某市居民在該平臺(tái)的消費(fèi)情況,從該市使用其平臺(tái)且每周平均消費(fèi)額超過100元的人員中隨機(jī)抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.
(1)求的值;
(2)分析人員對(duì)100名調(diào)查對(duì)象的性別進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),消費(fèi)金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計(jì)數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)金額與性別有關(guān)?
(3)分析人員對(duì)抽取對(duì)象每周的消費(fèi)金額與年齡進(jìn)一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費(fèi)金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替)
列聯(lián)表
男性 | 女性 | 合計(jì) | |
消費(fèi)金額 | |||
消費(fèi)金額 | |||
合計(jì) |
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的公差不為零,且,、、成等比數(shù)列,數(shù)列滿足
(1)求數(shù)列、的通項(xiàng)公式;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計(jì) | |
男 | 55 | ||
女 | |||
合計(jì) |
(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對(duì)冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對(duì)冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024> | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是( )
A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)
B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大
C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)
D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
(2)若有兩個(gè)極值點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若存在極小值,求實(shí)數(shù)的取值范圍;
(2)設(shè)是的極小值點(diǎn),且,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com