求數(shù)列{(-1)n•n}的前2010項(xiàng)的和S2010

解:∵(-1)n當(dāng)n為奇數(shù)是=-1,當(dāng)n為偶數(shù)是為1.
∴數(shù)列{(-1)n•n}中,S2010=(-1)1×1+(-1)2×2+…+(-1)2010×2010
=(-1)×(1-2)+(-1)×(3-4)+…+(-1)×(2009-2010)
=1+1+…+1(共1005個(gè))
=1005.
分析:由題意知S2010=(-1)1×1+(-1)2×2+…+(-1)2010×2010=(-1)×(1-2)+(-1)×(3-4)+…+(-1)×(2009-2010)
化簡(jiǎn)分析可得答案.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)任意的n∈N*,都有Sn=(m+1)-man(m為常數(shù),且m>0).
(1)求證:數(shù)列{an}是等比數(shù)列.
(2)設(shè)數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求數(shù)列{bn}的通項(xiàng)公式.
(3)在滿足(2)的條件下,求數(shù)列{
2n+1bn
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差為d(d>1)的等差數(shù)列{an}和公比為q(q>1)的等比數(shù)列{bn},
滿足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}
(1)求通項(xiàng)an,bn;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•桂林二模)已知數(shù)列{an}滿足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N)
(Ⅰ)求數(shù)列{
1
an
+(-1)n}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
an2
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N).
(1)試判斷數(shù)列{
1
an
+(-1)n}是否為等比數(shù)列,并說(shuō)明理由;
(2)設(shè)bn=
1
an2
,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)cn=ansin
(2n-1)π
2
,數(shù)列{cn}的前n項(xiàng)和為T(mén)n.求證:對(duì)任意的n∈N*,Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=12n-n2
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式,并證明{an}是等差數(shù)列;
(Ⅱ)若cn=12-an,求數(shù)列{
1cncn+1
}
的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案