【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺機器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機器在購買易損零件上所需的費用(單位:元), 表示購機的同時購買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買19個還是20個易損零件?

【答案】(1) ;(2)19;(3) 購買1臺機器的同時應購買19個易損零件.

【解析】試題分析:()分x19x19,分別求解析式;()通過頻率大小進行比較;()分別求出n=19,n=20時所需費用的平均數(shù)來確定.

試題解析:()當時, ;當時, ,所以的函數(shù)解析式為.

)由柱狀圖知,需更換的零件數(shù)不大于18的頻率為0.46,不大于19的頻率為0.7,故的最小值為19.

)若每臺機器在購機同時都購買19個易損零件,則這100臺機器中有70臺在購買易損零件上的費用為3 80020臺的費用為4 300,10臺的費用為4 800,因此這100臺機器在購買易損零件上所需費用的平均數(shù)為.

若每臺機器在購機同時都購買20個易損零件,則這100臺機器中有90臺在購買易損零件上的費用為4 000,10臺的費用為4 500,因此這100臺機器在購買易損零件上所需費用的平均數(shù)為.

比較兩個平均數(shù)可知,購買1臺機器的同時應購買19個易損零件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】東莞市某高級中學在今年4月份安裝了一批空調(diào),關于這批空調(diào)的使用年限(單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統(tǒng)計資料如下:

(1)請根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護費用關于的線性回歸方程;

(2)若規(guī)定當維護費用超過13.1萬元時,該批空調(diào)必須報廢,試根據(jù)(1)的結論求該批空調(diào)使用年限的最大值.

參考公式:最小二乘估計線性回歸方程中系數(shù)計算公式:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】靜寧縣是甘肅蘋果栽培第一大縣,中國著名優(yōu)質蘋果基地和重要蘋果出口基地.靜寧縣海拔高、光照充足、晝夜溫差大、環(huán)境無污染,適合種植蘋果.“靜寧蘋果”以色澤鮮艷、質細汁多,酸甜適度,口感脆甜、貨架期長、極耐儲藏和長途運輸而著名.為檢測一批靜寧蘋果,隨機抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

分組(重量)

[80,85)

[85,90)

[90,95)

[95,100)

頻數(shù)(個)

5

10

20

15


(1)根據(jù)頻數(shù)分布表計算蘋果的重量在[90,95)的頻率;
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的蘋果中共抽取4個,其中重量在[80,85)的有幾個?
(3)在(2)中抽出的4個蘋果中,任取2個,求重量在[80,85)和[95,100)中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,⊥平面,且四邊形是平行四邊形.

(1)求證:;

(2)當點的什么位置時,使得∥平面,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第十三屆全運會將在2017年8月在天津舉行,組委會在2017年1月對參加接待服務的10名賓館經(jīng)理進行為期半月的培訓,培訓結束,組織了一次培訓結業(yè)測試,10人考試成績?nèi)缦拢M分為100分):

75 84 65 90 88 95 78 85 98 82

()以成績的十位為莖個位為葉作出本次結業(yè)成績的莖葉圖,并計算平均成績與成績中位數(shù) ;

()從本次結業(yè)成績在80分以上的人員中選3人,這3人中成績在90分(含90分)以上的人數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A,B兩名同學在5次數(shù)學考試中的成績統(tǒng)計如下面的莖葉圖所示,若A,B兩人的平均成績分別是xA , xB , 觀察莖葉圖,下列結論正確的是(
A.xA<xB , B比A成績穩(wěn)定
B.xA>xB , B比A成績穩(wěn)定
C.xA<xB , A比B成績穩(wěn)定
D.xA>xB , A比B成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量, ,設函數(shù),且的圖象過點和點.

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個單位后得到函數(shù)的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第十三屆全運會將2017年9月在天津舉行,組委會在2017年1月對參加接待服務的10名賓館經(jīng)理進行為期半月的培訓,培訓結束,組織了一次培訓結業(yè)測試,10人考試成績?nèi)缦拢M分100分):

75 84 65 90 88 95 78 85 98 82

(Ⅰ)以成績的十位為莖、個位為葉作出本次結業(yè)成績的莖葉圖,并計算平均成績與成績的中位數(shù) ;

(Ⅱ)從本次成績在85分以上(含85分)的學員中任選2人,2人成績都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,且點PAD的中點,點QSB的中點.

(1)求證:CD⊥平面SAD

(2)求證:PQ∥平面SCD

(3)若SASD,點MBC的中點,在棱SC上是否存在點N,使得平面DMN⊥平面ABCD?若存在,請說明其位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案