下列對應(yīng)關(guān)系中,是的映射的有        .
,;
,的倒數(shù);
,
,
①④

試題分析:對于①:集合A中的每一個元素1、2、3在集合B中都有唯一的元素和它對應(yīng),所以是映射;
對于②集合A中的每一個元素0在集合B中沒有元素和它對應(yīng),所以不是映射;
對于③集合A中的每一個元素0在集合B中沒有元素和它對應(yīng),所以不是映射;
對于④集合A中的每一個元素在集合B中都有唯一的元素和它對應(yīng),所以是映射。
點(diǎn)評:本題考查了對映射概念的理解和把、象與原象的關(guān)系,屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實(shí)數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對于區(qū)間上的每一個值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在(-∞,—1)∪(1,+∞)上的奇函數(shù)滿足:①f(3)=1;②對任意的x>2, 均有f(x)>0,③對任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 
⑴試求f(2)的值;
⑵證明f(x)在(1,+∞)上單調(diào)遞增;
⑶是否存在實(shí)數(shù)a,使得f(cos2θ+asinθ)<3對任意的θ(0,π)恒成立?若存在,請求出a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函

(1)用分段函數(shù)的形式表示該函數(shù);(2)畫出該函數(shù)的圖象;(3)寫出該函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在上的奇函數(shù)對任意都有,當(dāng) 時,,則的值為(     )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),函數(shù)有最大值,則不等式的解集為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

小王需不定期地在某超市購買同一品種的大米.現(xiàn)有甲、乙兩種不同的采購策略,策略甲:每次購買大米的數(shù)量一定;策略乙:每次購買大米的錢數(shù)一定.若以(元)和(元)分別記小王先后兩次買米時,該品種大米的單價,請問:僅這兩次買米而言,甲、乙兩種購買方式,從平均單價考慮,哪種比較合算?請進(jìn)行探討,并給出探討過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
某市郊區(qū)一村民小組有100戶農(nóng)民,且都從事蔬菜種植.據(jù)調(diào)查,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),郊區(qū)政府決定動員該村部分農(nóng)民從事蔬菜加工.據(jù)預(yù)測,若能動員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高%,而從事蔬菜加工的農(nóng)民平均每戶的年收入將為萬元.
(1)在動員戶農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動員前從事蔬菜種植的農(nóng)民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某商品在近30天內(nèi)每天的銷售價格P(元)與時間t(天)的函數(shù)關(guān)系式為:
P=;該商品的日銷售量Q(件)與時間(天)的函數(shù)關(guān)系式為:
Q=-t+40(0<t≤30,t∈N*).求這種商品日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的哪一天?

查看答案和解析>>

同步練習(xí)冊答案