已知兩定點M,N的坐標分別為(-6,0),(6,0),動點P與M,N的連線斜率之積為-
49
,求動點P的軌跡方程,并畫出軌跡草圖.
分析:設(shè)出動點的坐標,根據(jù)動點P與M,N的連線斜率之積為-
4
9
,建立方程,即可求得動點P的軌跡方程
解答:解:設(shè)動點P的坐標為(x,y),依題有kPMkPN=-
4
9
,…(3分)
又M(-6,0),N(6,0)
y
x+6
y
x-6
=-
4
9
…(5分)
x2
36
+
y2
16
=1

故所求動點P的軌跡方程為
x2
36
+
y2
16
=1
…(8分)
依題作軌跡草圖如圖:
點評:本題考查軌跡方程的求解,解題的關(guān)鍵是設(shè)點,建立方程,化簡方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•珠海二模)已知兩定點M(-1,0),N(1,0),若直線上存在點P,使得|PM|+|PN|=4,則該直線為“A型直線”.給出下列直線,其中是“A型直線”的是
①④
①④

①y=x+1  ②y=2  ③y=-x+3 ④y=-2x+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知兩定點M,N的坐標分別為(-6,0),(6,0),動點P與M,N的連線斜率之積為數(shù)學公式,求動點P的軌跡方程,并畫出軌跡草圖.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省咸陽市高考數(shù)學模擬試卷1(文科)(解析版) 題型:解答題

已知兩定點M,N的坐標分別為(-6,0),(6,0),動點P與M,N的連線斜率之積為,求動點P的軌跡方程,并畫出軌跡草圖.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省咸陽市高考數(shù)學模擬試卷1(文科)(解析版) 題型:解答題

已知兩定點M,N的坐標分別為(-6,0),(6,0),動點P與M,N的連線斜率之積為,求動點P的軌跡方程,并畫出軌跡草圖.

查看答案和解析>>

同步練習冊答案