在直三棱柱中,, ,的中點(diǎn),上一點(diǎn),且

(1)求證: 平面;

(2)求三棱錐的體積;

(3)試在上找一點(diǎn),使得平面

(1同解析; (2)三棱錐的體積=;(3)當(dāng)時(shí),平面. 


解析:

(1)證明:中點(diǎn)   ,又直三棱柱中:底面

底面,平面,平面

 .在 矩形中:

   ,  ,即

,         ,平面;        

(2)解:平面 

                                  =;    

(3)當(dāng)時(shí),平面

證明:連,設(shè),連,

  為矩形,中點(diǎn),

中點(diǎn),,

平面,平面   平面.         

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=
2
,M為A1B1的中點(diǎn),則AM與平面AA1C1C所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•江蘇二模)在直三棱柱中,AC⊥BC,AC=4,BC=CC1=2,若用平行于三棱柱A1B1C1-ABC的某一側(cè)面的平面去截此三棱柱,使得到的兩個(gè)幾何體能夠拼接成長(zhǎng)方體,則長(zhǎng)方體表面積的最小 值為
24
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年湖北卷理)(本小題滿分12分)

如圖,在直三棱柱中,平面側(cè)面

(Ⅰ)求證:

(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ的大小關(guān)系,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年十校聯(lián)考) (12分) 在直三棱柱中,

(1)求證:

(2)求二面角的大;

(3)求點(diǎn)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題

如圖,在直三棱柱中,,,點(diǎn) 是的中點(diǎn),點(diǎn)在側(cè)棱上,且

(1)求二面角的大小;

(2)求點(diǎn)到平面的距離.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案