函數(shù)f(x)=2x+
8
x
的單調(diào)遞減區(qū)間是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)單調(diào)性的判斷與證明
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求導(dǎo)數(shù),利用導(dǎo)數(shù)小于0,可得函數(shù)的單調(diào)遞減區(qū)間.
解答: 解:∵f(x)=2x+
8
x
,
∴y′=2-
8
x2
,
令y′<0,可得-2<x<0或0<x<2,
∴函數(shù)f(x)=2x+
8
x
單調(diào)遞減區(qū)間是(-2,0),(0,2).
故答案為:(-2,0),(0,2).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,正確求導(dǎo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
1-x
x
<0的解集記為p,關(guān)于x的不等式x2-(a+1)x+a>0的解集記為q,若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin(2x+
π
2
)的圖象向右平移
π
3
個(gè)單位,得到函數(shù)(  )
A、y=cos(2x+
π
3
B、y=cos(2x+
3
C、y=cos(2x-
π
3
D、y=cos(2x-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a≥b>c,則a與c的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一半徑為R的扇形,它的周長(zhǎng)等于所在圓的周長(zhǎng),那么扇形的圓心角是多少弧度?面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn滿足Sn=
3
2
(bn-1)且a2=b1,a5=b2
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an•bn,設(shè)Tn為{cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|x2+2x-15<0},N={x|(1+x)(6-x)<-8},求M∪N,M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(φ-2x)(0<φ<π),y=f(x)的圖象的一條對(duì)稱軸是直線x=
π
8

(1)求φ的值;
(2)求函數(shù)y=f(x)在[-π,0]的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:f(x)=x2-2x在x∈(-∞,0)上為減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案