能夠把圓O:x2+y2=16的周長和面積同時分為相等的兩部分的函數(shù)稱為圓O的“和諧函數(shù)”,
①f(x)=4x3+x;    ②f(x)=ln
5-x
5+x
;
③f(x)=ex+e-x;    ④f(x)=tan
x
2

上述函數(shù)不是圓O的“和諧函數(shù)”的是
 
(將正確序號填寫在橫線上)
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由“和諧函數(shù)”的定義知,若函數(shù)為“和諧函數(shù)”,則該函數(shù)為過原點的奇函數(shù).
解答: 解:由“和諧函數(shù)”的定義知,若函數(shù)為“和諧函數(shù)”,則該函數(shù)為過原點的奇函數(shù).
①中,f(0)=0,且f(x)為奇函數(shù),故f(x)=4x3+x為“和諧函數(shù)”;
②中,f(0)=ln1=0,且f(-x)=f(x),所以f(x)為奇函數(shù),
所以f(x)=ln
5-x
5+x
為“和諧函數(shù)”;
③中,f(0)=e0+e-0=2,所以f(x)=ex+e-x的圖象不過原點,
故f(x))=ex+e-x不為“和諧函數(shù)”;
④中,f(0)=tan0=0,且f(-x)=f(x),f(x)為奇函數(shù),
故f(x)=tan
x
2
為“和諧函數(shù)”.
故答案為:③.
點評:本題考查“和諧函數(shù)”的判斷,是基礎(chǔ)題,解題時要注意函數(shù)的性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)y=f(x)是奇函數(shù),當x<0時,f(x)=x(1+x),則f(5)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
0
-x2+2x
-x
)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(-1+i)(2+i)
i3
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若角α的終邊經(jīng)過點P(1,-2),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于函數(shù)f(x)=4sin(2x+
π
3
)(x∈R),有如下說法:
①y=f(x)的圖象可由y=4sin2x的圖象上所有的點向左平移
π
3
個單位而得到;
②y=f(x)的圖象可由y=4sin(x+
π
3
)圖象上所有點的橫坐標伸長到原來的2倍  (縱坐標不變)而得到;
③y=f(x)的圖象關(guān)于點(-
π
6
,0)對稱;
④y=f(x)的圖象關(guān)于直線x=
π
3
對稱
其中,正確的說法是
 
(列出所有你認為正確的說法)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個結(jié)論:
①若角的集合A={α|α=
2
+
π
4
,k∈Z},B={β|β=kπ±
π
4
,k∈Z},則A=B;
②sin
7
<cos
7
<tan
7

③[kπ-
π
12
,kπ+
12
]k∈Z是函數(shù)y=sin(
π
3
-2x)的單調(diào)遞減區(qū)間;
④函數(shù)y=|tanx|的周期和對稱軸方程分別為π,x=
2
(k∈Z);
其中正確結(jié)論的序號是
 
.(請寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinx+cosx,在各項均為正數(shù)的數(shù)列{an}中對任意的n∈N*都有f(an+x)=f(an-x)成立,則數(shù)列{an}的通項公式可以為(寫一個你認為正確的)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos(α-35°)cos(α+25°)+sin(α-35°)sin(α+25°)等于(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

同步練習冊答案