如圖,在直角梯形中,°,,平面,,設(shè)的中點(diǎn)為,

(1) 求證:平面
(2) 求四棱錐的體積.

(1)證明見解析;(2)

解析試題分析:(1)通過(guò)勾股定理通過(guò)計(jì)算可證明,然后結(jié)合條件可證明得到結(jié)果;(2)首先根據(jù)條件和(1)的結(jié)論可證明平面,得到,再利用勾股定理可求得的值,進(jìn)而求求得四棱錐的體積.
(1)證明:,
,
(2),
平面,∴
,∴平面
平面,∴



考點(diǎn):1、空間直線與平面的垂直關(guān)系;2、棱錐的體積計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖菱形ABEF所在平面與直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,點(diǎn)H、G分別是線段EF、BC的中點(diǎn).
(1)求證:平面AHC平面;(2)(2)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)棱底面,且,的中點(diǎn).
(1)證明:平面
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,
.
(1)求證:;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱ABC—A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(1)求證:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在五面體中,已知平面,,

(1)求證:
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖在四棱錐中,底面是矩形,平面,,點(diǎn)中點(diǎn),點(diǎn)邊上的任意一點(diǎn).

(1)當(dāng)點(diǎn)邊的中點(diǎn)時(shí),判斷與平面的位置關(guān)系,并加以證明;
(2)證明:無(wú)論點(diǎn)邊的何處,都有;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

一個(gè)六棱柱的底面是正六邊形,其側(cè)棱垂直于底面.已知該六棱柱的頂點(diǎn)都在同一球面上,且該六棱柱的體積為,底面周長(zhǎng)為3,則這個(gè)球的體積為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在球面上有四個(gè)點(diǎn)P、A、B、C,如果PA、PB、PC兩兩互相垂直,且PA=PB=PC=a,求這個(gè)球的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案