設(shè)橢圓C:的左、右焦點(diǎn)分別為F1、F2,A是橢圓C上的一點(diǎn),,坐標(biāo)原點(diǎn)O到直線AF1的距離為.
(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過(guò)點(diǎn)Q的直線l 交 x 軸于點(diǎn),交 y 軸于點(diǎn)M,若,求直線l 的斜率.
(1)         (2) .
(1)根據(jù)三角形相似和橢圓的定義求出中,由勾股定理求出,即得橢圓的方程;(2)設(shè)直線l 的斜率為k , 點(diǎn),求出點(diǎn)的坐標(biāo),由得點(diǎn)的坐標(biāo)用表示,再由點(diǎn)在橢圓上,求得
(1)由于,則有,過(guò),
   
  
故所求橢圓C的方程為
(2) 由題意知直線l 的斜率存在.設(shè)直線l 的斜率為k , 直線l 的方程為, 則有M(0,k),設(shè),由于Q, F,M三點(diǎn)共線,且,根據(jù)題意,得,解得
又點(diǎn)Q在橢圓上,所以 
解得.綜上,直線l 的斜率為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率,A,B分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn),M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(guò)(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C方程:(x-1)2 + y 2=9,垂直于x軸的直線L與圓C相切于N點(diǎn)(N在圓心C的右側(cè)),平面上有一動(dòng)點(diǎn)P,若PQ⊥L,垂足為Q,且

(1)求點(diǎn)P的軌跡方程; 
(2)已知D為點(diǎn)P的軌跡曲線上第一象限弧上一點(diǎn),O為原點(diǎn),A、B分別為點(diǎn)P的軌跡曲線與軸的正半軸的交點(diǎn),求四邊形OADB的最大面積及D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(本小題滿分12分)
如圖所示,點(diǎn)在圓上,軸,點(diǎn)在射線上,且滿足.

(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程,并根據(jù)取值說(shuō)明軌跡的形狀.
(Ⅱ)設(shè)軌跡軸正半軸交于點(diǎn),與軸正半軸交于點(diǎn),直線與軌跡交于點(diǎn)、,點(diǎn)在直線上,滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2是雙曲線的左右焦點(diǎn),過(guò)F1的直線與左支交于A、B兩點(diǎn),若,則該雙曲線的離心率是為(   )
A.            B.        C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線在點(diǎn)P處的切線分別交x軸、y軸于不同的兩點(diǎn)A、B,。當(dāng)點(diǎn)P在C上移動(dòng)時(shí),點(diǎn)M的軌跡為D。
(1)求曲線D的方程:
(2)圓心E在y軸上的圓與直線相切于點(diǎn)P,當(dāng)|PE|=|PA|,求圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓E經(jīng)過(guò)點(diǎn)A(2,3),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,離心率
(1)求橢圓E的方程;
(2)求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為. 過(guò)拋物線上一點(diǎn)M作的垂線,垂足為E. 若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p = ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-2,0)、B(2,0),M是動(dòng)點(diǎn),且直線MA與直線MB的斜率之積為,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(I)求曲線C的方程;
(II)過(guò)定點(diǎn)T(-1,0)的動(dòng)直線與曲線C交于P,Q兩點(diǎn),若,證明:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案