某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評(píng)價(jià)該產(chǎn)品的等級(jí).若S≤4,則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)
A1
A2
A3
A4
A5
質(zhì)量指標(biāo)(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產(chǎn)品編號(hào)
A6
A7
A8
A9
A10
質(zhì)量指標(biāo)(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機(jī)抽取兩件產(chǎn)品,
(1)用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
(2)設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率

(1)該批產(chǎn)品的一等品率為.(2)(1)所有可能結(jié)果為,,.(2).

解析試題分析:(1)首先將3項(xiàng)指標(biāo)相加,求出綜合指標(biāo)S.然后找出其中的產(chǎn)品,便可估計(jì)出該批產(chǎn)品的一等品率.(2)(1)根據(jù)(1)題結(jié)果可知,、、、為一等品,共6件.從這6件一等品中隨機(jī)抽取2件產(chǎn)品的所有可能結(jié)果為:,,,共15種.(2)在該樣本的一等品中,綜合指標(biāo)S等于4的產(chǎn)品編號(hào)分別為、、,則事件B發(fā)生的所有可能結(jié)果為共6種.由古典概型概率公式可得事件B發(fā)生的概率.
試題解析:(1)10件產(chǎn)品的綜合指標(biāo)S如下表所示:

產(chǎn)品編號(hào)










S
4
4
6
3
4
5
4
5
3
5
其中
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下莖葉圖記錄了甲,乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績(jī)(十位數(shù)字為莖,個(gè)位數(shù)字為葉).乙組記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以表示.
(1)若甲,乙兩個(gè)小組的數(shù)學(xué)平均成績(jī)相同,求的值;
(2)當(dāng)時(shí),分別從甲,乙兩組同學(xué)中各隨機(jī)選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績(jī)之差的絕對(duì)值不超過2分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩名運(yùn)動(dòng)員參加“選拔測(cè)試賽”,在相同條件下,兩人5次測(cè)試的成績(jī)(單位:分)記錄如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用莖葉圖表示這兩組數(shù)據(jù);.
(2)現(xiàn)要從中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰參賽更好?說明理由(不用計(jì)算);
(3)若從甲、乙兩人的5次成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期
12月1日
12月2日
12月3日
12月4日
12月5日
溫差x/℃
10
11
13
12
8
發(fā)芽數(shù)y
/顆
23
25
30
26
16
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

     性別
是否需要志愿者     


需要
40
30
不需要
160
270
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.
附:
P(K2≥x0)
0.050
0.010
0.001
x0
3.841
6.635
10.828
 
χ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)車間為了規(guī)定工時(shí)定額.需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了10次試驗(yàn).測(cè)得的數(shù)據(jù)如下:

零件數(shù)x/個(gè)
10
20
30
40
50
60
70
80
90
100
加工時(shí)間y/分
62
68
75
81
89
95
102
108
115
122
(1)y與x是否具有線性相關(guān)關(guān)系?
(2)如果y與x具有線性相關(guān)關(guān)系,求回歸直線方程;
(3)根據(jù)求出的回歸直線方程,預(yù)測(cè)加工200個(gè)零件所用的時(shí)間為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某大學(xué)聯(lián)盟的自主招生考試中,報(bào)考文史專業(yè)的考生參加了人文基礎(chǔ)學(xué)科考試科目“語文”和“數(shù)學(xué)”的考試.某考場(chǎng)考生的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,本次考試中成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/43/9/1payl3.png" style="vertical-align:middle;" />內(nèi)的記為,其中“語文”科目成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/0/pv4s42.png" style="vertical-align:middle;" />內(nèi)的考生有10人.

(1)求該考場(chǎng)考生數(shù)學(xué)科目成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的人數(shù);
(2)已知參加本考場(chǎng)測(cè)試的考生中,恰有2人的兩科成績(jī)均為.在至少一科成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績(jī)均為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
5
 
女生
10
 
 
合計(jì)
 
 
50
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的8位女生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選中的概率.
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)舉行了為期3天的新世紀(jì)體育運(yùn)動(dòng)會(huì),同時(shí)進(jìn)行全校精神文明擂臺(tái)賽.為了解這次活動(dòng)在全校師生中產(chǎn)生的影響,分別在全校500名教職員工、3000名初中生、4000名高中生中作問卷調(diào)查,如果要在所有答卷中抽出120份用于評(píng)估.
(1)應(yīng)如何抽取才能得到比較客觀的評(píng)價(jià)結(jié)論?
(2)要從3000份初中生的答卷中抽取一個(gè)容量為48的樣本,如果采用簡(jiǎn)單隨機(jī)抽樣,應(yīng)如何操作?
(3)為了從4000份高中生的答卷中抽取一個(gè)容量為64的樣本,如何使用系統(tǒng)抽樣抽取到所需的樣本?

查看答案和解析>>

同步練習(xí)冊(cè)答案