過拋物線y2=2px(p>0)的焦點作直線交拋物線于P(x1,y1),Q(x2,y2)兩點,若x1+x2=3p,則|PQ|等于


  1. A.
    4p
  2. B.
    5p
  3. C.
    6p
  4. D.
    8p
A
分析:利用拋物線的定義可得,|PQ|=|PF|+|QF|=x1++x2 +,把x1+x2=3p代入可得結果.
解答:設拋物線y2=2px(p>0)的焦點為F,由拋物線的定義可知,|PQ|=|PF|+|QF|=x1++x2 +
=(x1+x2)+p=4p,
故選 A.
點評:本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準線的交點為B,點A在拋物線準線上的射影為C,若
AF
=
FB
BA
BC
=48
,則拋物線的方程為( 。
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)上一定點P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),若PA與PB的斜率存在且傾斜角互補,則
y1+y2y0
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F作直線交拋物線于A、B兩點,O為拋物線的頂點.則△ABO是一個( 。
A、等邊三角形B、直角三角形C、不等邊銳角三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F的直線AB交拋物線于A,B兩點,弦AB的中點為M,過M作AB的垂直平分線交x軸于N.
(1)求證:FN=
12
AB
;
(2)過A,B的拋物線的切線相交于P,求P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•武漢模擬)已知過拋物線y2=2px(p>0)的焦點F的直線交拋物線于M、N兩點,直線OM、ON(O為坐標原點)分別與準線l:x=-
p
2
相交于P、Q兩點,則∠PFQ=( 。

查看答案和解析>>

同步練習冊答案