(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點(diǎn)的實(shí)數(shù)的取值范圍.
(1)f(x)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e4/f/gxd4s1.png" style="vertical-align:middle;" /> ,f(-x)=log2=log2=-f(x)(2)。
解析試題分析:(1)f(x)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e4/f/gxd4s1.png" style="vertical-align:middle;" /> 2分
f(-x)=log2=log2=-f(x),
所以,f(x)為奇函數(shù). 6分
(2)由y=,得x=,
所以,f -1(x)= ,x0. 9分
因?yàn)楹瘮?shù)有零點(diǎn),
所以,應(yīng)在的值域內(nèi).
所以,log2k==1+, 13分
從而,k. 14分
考點(diǎn):函數(shù)的奇偶性;反函數(shù);函數(shù)的零點(diǎn)。
點(diǎn)評:判斷函數(shù)的奇偶性有兩步:一求函數(shù)的定義域,看定義域是否關(guān)于原點(diǎn)對稱;二判斷與的關(guān)系。若定義域不關(guān)于原點(diǎn)對稱,則函數(shù)一定是非奇非偶函數(shù)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
一種放射性元素,最初的質(zhì)量為500g,按每年10﹪衰減.
(Ⅰ)求t年后,這種放射性元素質(zhì)量ω的表達(dá)式;
(Ⅱ)由求出的函數(shù)表達(dá)式,求這種放射性元素的半衰期(剩留量為原來的一半所需要的時(shí)間).(精確到0.1;參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)某化工企業(yè)2012年底投入100萬元,購入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元.設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(萬元)。
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備.則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
我市有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同.甲家每張球臺每小時(shí)5元;乙家按月計(jì)費(fèi),一個(gè)月中30小時(shí)以內(nèi)(含30小時(shí))每張球臺90元,超過30小時(shí)的部分每張球臺每小時(shí)2元.小張準(zhǔn)備下個(gè)月從這兩家中的一家租一張球臺開展活動(dòng),其活動(dòng)時(shí)間不少于15小時(shí),也不超過40小時(shí).
(1)設(shè)在甲家租一張球臺開展活動(dòng)小時(shí)的收費(fèi)為元,在乙家租一張球臺開展活動(dòng)小時(shí)的收費(fèi)為元,試求和。
(2)問:小張選擇哪家比較合算?說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分分)已知函數(shù)(,是不同時(shí)為零的常數(shù)).
(1)當(dāng)時(shí),若不等式對任意恒成立,求實(shí)數(shù)的取值范圍;
(2)求證:函數(shù)在內(nèi)至少存在一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)經(jīng)市場調(diào)查,某商場的一種商品在過去的一個(gè)月內(nèi)(以30天計(jì))銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系近似滿足(為正的常數(shù)),日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系近似滿足,且第25天的銷售金額為13000元.
(1)求的值;
(2)試寫出該商品的日銷售金額關(guān)于時(shí)間的函數(shù)關(guān)系式,并求前半個(gè)月銷售金額的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時(shí),每噸為1.80元;當(dāng)用水超過4噸時(shí),超過部分每噸3.00元。某月甲、乙兩戶共交水費(fèi)元,已知甲、乙兩戶該月用水量分別為噸和噸。
(1)求關(guān)于的函數(shù);
(2)若甲、乙兩戶該月共交水費(fèi)26.4元,分別求出甲、乙兩戶該月的用水量和水費(fèi)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com