命題“?x∈R,使log2x≤0成立”的否定為( )
A.?x∈R,使log2x>0成立
B.?x∈R,使log2x≥0成立
C.?x∈R,均有l(wèi)og2x≥0成立
D.?x∈R,均有l(wèi)og2x>0成立
【答案】分析:特稱命題“?x∈R,使log2x≤0成立”的否定是:把?改為?,其它條件不變,然后否定結(jié)論,變?yōu)橐粋全稱命題.即“?x∈R,均有l(wèi)og2x>0成立”.
解答:解:特稱命題“?x∈R,使log2x≤0成立”的否定是全稱命題“?x∈R,均有l(wèi)og2x>0成立”.
故選D.
點評:本題考查特稱命題的否定形式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•瀘州一模)已知命題p:夾角為m的單位向量a,b使|a-b|>l,命題q:函數(shù)f(x)=msin(mx)的導(dǎo)函數(shù)為f′(x),若?xo∈R,f′(xo)≥
4π25
.設(shè)符合p∧q為真的實數(shù)m的取值的集合為A.
(I)求集合A;
(Ⅱ)若B={x∈R|x2=πa},且B∩A=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知命題p:夾角為m的單位向量a,b使|a-b|>l,命題q:函數(shù)f(x)=msin(mx)的導(dǎo)函數(shù)為f′(x),若?xo∈R,數(shù)學(xué)公式.設(shè)符合p∧q為真的實數(shù)m的取值的集合為A.
(I)求集合A;
(Ⅱ)若B={x∈R|x2=πa},且B∩A=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:瀘州一模 題型:解答題

已知命題p:夾角為m的單位向量a,b使|a-b|>l,命題q:函數(shù)f(x)=msin(mx)的導(dǎo)函數(shù)為f′(x),若?xo∈R,f′(xo)≥
4π2
5
.設(shè)符合p∧q為真的實數(shù)m的取值的集合為A.
(I)求集合A;
(Ⅱ)若B={x∈R|x2=πa},且B∩A=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省瀘州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知命題p:夾角為m的單位向量a,b使|a-b|>l,命題q:函數(shù)f(x)=msin(mx)的導(dǎo)函數(shù)為f′(x),若?xo∈R,.設(shè)符合p∧q為真的實數(shù)m的取值的集合為A.
(I)求集合A;
(Ⅱ)若B={x∈R|x2=πa},且B∩A=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省瀘州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知命題p:夾角為m的單位向量a,b使|a-b|>l,命題q:函數(shù)f(x)=msin(mx)的導(dǎo)函數(shù)為f′(x),若?xo∈R,.設(shè)符合p∧q為真的實數(shù)m的取值的集合為A.
(I)求集合A;
(Ⅱ)若B={x∈R|x2=πa},且B∩A=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案