【題目】如圖所示,在正方體ABCDA1B1C1D1中,M,N分別是棱AB,CC1的中點(diǎn),△MB1P的頂點(diǎn)P在棱CC1與棱C1D1上運(yùn)動,有以下四個命題:

①平面MB1P⊥ND1

②平面MB1P⊥平面ND1A1;

③△MB1P在底面ABCD上的射影圖形的面積為定值;

④△MB1P在側(cè)面DD1C1C上的射影圖形是三角形.

其中正確的命題序號是(  )

A. B. ②③

C. ①③D. ②④

【答案】B

【解析】

由正方體的幾何性質(zhì)及線面垂直、面面垂直等相關(guān)知識對四個命題進(jìn)行判斷

①平面,可用極限位置判斷,當(dāng)重合時,平面不成立,故①錯誤;

②因?yàn)?/span>,且,平面,

平面,則平面平面,故②正確

在底面上的射影圖形的面積為定值,可以看到其投影三角形底邊是,點(diǎn)在底面上的投影在上,故其到的距離不變,故投影圖形的面積為定值,故③正確;

④當(dāng)點(diǎn)落在點(diǎn)時,在側(cè)面上的射影圖形是條線段,故④錯誤,

故正確的是②③,故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)每年暑假舉行“學(xué)科思維講座”活動,每場講座結(jié)束時,所有聽講者都要填寫一份問卷調(diào)查.2017年暑假某一天五場講座收到的問卷分?jǐn)?shù)情況如下表:

用分層抽樣的方法從這一天的所有問卷中抽取300份進(jìn)行統(tǒng)計,結(jié)果如下表:

(1)估計這次講座活動的總體滿意率;

(2)求聽數(shù)學(xué)講座的甲某的調(diào)查問卷被選中的概率;

(3)若想從調(diào)查問卷被選中且填寫不滿意的人中再隨機(jī)選出5人進(jìn)行家訪,求這5人中選擇的是理綜講座的人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側(cè)墻砌磚,每米長造價45元,頂部每平方米造價20元,求:

1)倉庫頂部面積的最大允許值是多少?

2)為使達(dá)到最大,而實(shí)際投資又不超過預(yù)算,那么正面鐵柵應(yīng)設(shè)計為多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正方形沿對角線折成直二面角,

與平面所成角的大小為

是等邊三角形

所成的角為

⑤二面角

則上面結(jié)論正確的為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體,底面ABFE是邊長為2的正方形,DECF均垂直于平面ABFE,且

1)證明:BE∥平面ACD;

2)求三棱錐BACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,側(cè)面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M為PC的中點(diǎn).

(1)求證:PC⊥AD.

(2)在棱PB上是否存在一點(diǎn)Q,使得A,Q,M,D四點(diǎn)共面?若存在,指出點(diǎn)Q的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校想了解高二數(shù)學(xué)成績在學(xué)業(yè)水平考試中的情況,從中隨機(jī)抽出人的數(shù)學(xué)成績作為樣本并進(jìn)行統(tǒng)計,頻率分布表如下表所示.

組號

分組

頻數(shù)

頻率

第1組

第2組

第3組

第4組

第5組

合計

(1)據(jù)此估計這次參加數(shù)學(xué)考試的高二學(xué)生的數(shù)學(xué)平均成績;

(2)從這五組中抽取人進(jìn)行座談,若抽取的這人中,恰好有人成績?yōu)?/span>分,人成績?yōu)?/span>分,人成績?yōu)?/span>分,人成績?yōu)?/span>分,求這人數(shù)學(xué)成績的方差;

(3)從人的樣本中,隨機(jī)抽取測試成績在內(nèi)的兩名學(xué)生,設(shè)其測試成績分別為,.

(i)求事件“”的概率;

(ii)求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上一動點(diǎn).

(Ⅰ)求證:當(dāng)點(diǎn)為線段的中點(diǎn)時,平面

(Ⅱ)設(shè),試問:是否存在實(shí)數(shù),使得平面與平面所成銳二面角的余弦值為?若存在,求出這個實(shí)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若曲線在點(diǎn) 處的切線方程為.

(Ⅰ)求的解析式;

(Ⅱ)求證:在曲線上任意一點(diǎn)處的切線與直線所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊答案