設(shè)
e1
e2
是平面內(nèi)一組基底,證明:當(dāng)λ1
e1
+λ2
e2
=0時(shí),恒有λ12=0成立.
考點(diǎn):平面的基本性質(zhì)及推論
專題:平面向量及應(yīng)用
分析:利用反證明法證明.
解答: 證明:∵
e1
e2
是平面內(nèi)一組基底,∴
e1
e2
不共線,
假設(shè)λ1≠λ2≠0,
由題干得:
e1
=-(
λ2
λ1
e2
,∴
e1
,
e2
共線,
與已知條件矛盾,
∴假設(shè)不成立,
∴當(dāng)λ1
e1
+λ2
e2
=0時(shí),恒有λ12=0成立.
點(diǎn)評:本題考查兩實(shí)數(shù)同時(shí)等于0的證明,解題時(shí)要認(rèn)真審題,要注意向量知識的靈活運(yùn)用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l不平行于平面 α,且l?α,則( 。
A、α內(nèi)不存在與l平行的直線
B、α內(nèi)的所有直線與l異面
C、α內(nèi)存在唯一的直線與l平行
D、α內(nèi)的直線與l都相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2-(k+1)x+k
(1)若關(guān)于x的不等式f(x)<0為(1,2),求實(shí)數(shù)k的值;
(2)設(shè)k>1且k≠2,求關(guān)于x的不等式
f(x)
2-x
<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高一年級有2000名學(xué)生,從中隨機(jī)抽出60名學(xué)生,將這60名學(xué)生的某次數(shù)學(xué)考試成績(百分制)分成六段[40,50),[50,60),…,[90,100]后,得到如圖所示的頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)根據(jù)頻率分布直方圖推測,高一年級2000名學(xué)生在該次數(shù)學(xué)考試中成績低于60分的人數(shù);
(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,請根據(jù)頻率分布直方圖估計(jì)高一年級該次數(shù)學(xué)考試的平均成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別a,b,c,且
sinC
2sinA-sinC
=
ccosB
bcosC

(Ⅰ)求角B的大;
(Ⅱ)若線段AB的中點(diǎn)為D,且a=1,CD=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+ax+a)ex(e為自然對數(shù)的底數(shù)).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在R上是單調(diào)增函數(shù)?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD為直角梯形,AB∥CD,AB⊥BC,△ABE為等邊三角形,且平面ABCD⊥平面ABE,AB=2CD=2BC=2,P為CE中點(diǎn).
(Ⅰ)求證:AB⊥DE;
(Ⅱ)求平面ADE與平面BCE所成的銳二面角的余弦值;
(Ⅲ)在△ABE內(nèi)是否存在一點(diǎn)Q,使PQ⊥平面CDE,如果存在,求PQ的長;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,f(2)=0,則滿足不等式f(x)>0的實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若B=60°,b=
3
,則a+c的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案