(2007•深圳一模)如圖,AB是半圓O的直徑,C在半圓上,CD⊥AB于D,且AD=3DB,設(shè)∠COD=θ,則tan2
θ
2
=
1
3
1
3
分析:由已知中AB是半圓O的直徑,點C在半圓上,CD⊥AB于點D,且AD=3DB,我們可以設(shè)出圓的半徑為R,進而根據(jù)射影定理求出CD的長,解三角形COD即可求出θ角,進而得到答案.
解答:解:設(shè)半徑為R,
則AD=
3
2
R,BD=
R
2
,
由射影定理得:
CD2=AD•BD
則CD=
3
2
R,
從而θ=
π
3
,
故tan2
θ
2
=
1
3

故答案為:
1
3
點評:本題考查的知識點是直角三角形的射影定理,其中根據(jù)射影定理求出CD的長,解三角形COD即可求出θ角,是解答本題的關(guān)鍵
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2007•深圳一模)已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,其中{an}、{bn}分別為等差數(shù)列和等比數(shù)列,O為坐標原點,若P1是線段AB的中點.
(Ⅰ)求a1,b1的值;
(Ⅱ)點P1,P2,P3,…,Pn,…能否共線?證明你的結(jié)論;
(Ⅲ)證明:對于給定的公差不零的{an},都能找到唯一的一個{bn},使得P1,P2,P3,…,Pn,…,都在一個指數(shù)函數(shù)的圖象上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•深圳一模)已知
a
b
均為單位向量,它們的夾角為60°,那么|
a
-3
b
|
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•深圳一模)已知函數(shù)f(x)=x-a
x
+lnx
(a為常數(shù)).
(Ⅰ)當a=5時,求f(x)的極值;
(Ⅱ)若f(x)在定義域上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•深圳一模)將圓x2+y2=8上的點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?span id="cs1hiqx" class="MathJye">
2
2
倍,得到曲線C.設(shè)直線l與曲線C相交于A、B兩點,且M,其中M是曲線C與y軸正半軸的交點.
(Ⅰ)求曲線C的方程;
(Ⅱ)證明:直線l的縱截距為定值.

查看答案和解析>>

同步練習冊答案