【題目】如圖,在四棱錐P﹣ABCD中, 平面PCD,平面PAD平面ABCD,CD⊥AD,△APD為等腰直角三角形, .
(1)證明:平面PAB⊥平面PCD;
(2)若三棱錐B﹣PAD的體積為 ,求平面PAD與平面PBC所成二面角的余弦值.
【答案】
(1)證明:依題: CD⊥面PADCD⊥AP,
又AP⊥PD,∴AP⊥平面PCD,
又AP平面PAB,∴平面PAB⊥平面PCD;
(2)解: AB∥CD
由(1)知AB⊥面PAD∴ = ,
取AD中點(diǎn)O,PO⊥AD,平面PAD平面ABCD,∴PO平面ABCD,
以過點(diǎn)O且平行于AB的直線為x軸,如圖建系,各點(diǎn)坐標(biāo)如圖.
由(1)易知平面PAD的一法向量為 ,
設(shè)平面PBC的法向量為
. , . ,
取x=2, . = ,
故所求二面角的余弦值為 .
【解析】(1)依題意得CD⊥AP,AP⊥PD,即AP⊥平面PCD,可得平面PAB⊥平面PCD(2) ,AB∥CD
由(1)知AB⊥面PAD,由 = ,
取AD中點(diǎn)O,以過點(diǎn)O且平行于AB的直線為x軸建系,利用向量求解.
【考點(diǎn)精析】利用平面與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知一個平面過另一個平面的垂線,則這兩個平面垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=sin2x的圖象經(jīng)過適當(dāng)變換可以得到y(tǒng)=cos2x的圖象,則這種變換可以是( )
A.沿x軸向右平移 個單位
B.沿x軸向左平移 個單位
C.沿x軸向左平移 個單位
D.沿x軸向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)n為正整數(shù)時,函數(shù)N(n)表示n的最大奇因數(shù),如N(3)=3,N(10)=5,…,設(shè)Sn=N(1)+N(2)+N(3)+N(4)+…+N(2n﹣1)+N(2n),則Sn= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD的兩條對角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x﹣3y﹣6=0,點(diǎn)T(﹣1,1)在AD邊所在直線上. (Ⅰ)求AD邊所在直線的方程;
(Ⅱ)求矩形ABCD外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果為( )
A.2
B.1
C.0
D.﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , ,向量 , 的夾角為90°,點(diǎn)C在AB上,且∠AOC=30°.設(shè) =m +n (m,n∈R),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進(jìn)行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=( )
A.9
B.10
C.12
D.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m、n、s、t∈R* , m+n=3, 其中m、n是常數(shù)且m<n,若s+t的最小值 是 ,滿足條件的點(diǎn)(m,n)是橢圓 一弦的中點(diǎn),則此弦所在的直線方程為( )
A.x﹣2y+3=0
B.4x﹣2y﹣3=0
C.x+y﹣3=0
D.2x+y﹣4=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com