已知直線x-y-2=0與曲線y=x2+mx+m有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)m的取值范圍.
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:方程思想,圓錐曲線的定義、性質(zhì)與方程
分析:
x-y-2=0
y=x2+mx+m
,化簡(jiǎn)得;x2+(m-1)x+m+2=0,借助判別式求解判斷.
解答: 解:
x-y-2=0
y=x2+mx+m
,化簡(jiǎn)得;x2+(m-1)x+m+2=0,
∵直線x-y-2=0與曲線y=x2+mx+m有兩個(gè)不同的公共點(diǎn),
∴△>0,即m2-6m-7>0,
m>7或m<-1
所以實(shí)數(shù)m的取值范圍為(-∞,-1)∪(7,+∞)
點(diǎn)評(píng):本題考查了利用方程的方法,解決直線與曲線的位置關(guān)系的問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)為R上的可導(dǎo)函數(shù),當(dāng)x≠0時(shí),f′(x)+
f(x)
x
>0,則關(guān)于的函數(shù)g(x)=f(x)+
2
x
的零點(diǎn)個(gè)數(shù)為( 。
A、0B、1
C、2D、0或 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知等比數(shù)列{an}所有項(xiàng)均為正數(shù),首項(xiàng)a1=1,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1-λan}的前n項(xiàng)和為Sn,若S6=63,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列對(duì)應(yīng)關(guān)系:
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根;
②A=R,B=R,f:x→x的倒數(shù);
③A=R,B=R,f:x→x2-2;
④A表示平面內(nèi)周長(zhǎng)為5的所有三角形組成集合,B是平面內(nèi)所有的點(diǎn)的集合,f:三角形→三角形的外心.
其中是A到B的映射的是( 。
A、③④B、②④C、①③D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x3的一條切線l與直線x+4y-8=0垂直,則l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=4x與曲線y=x3圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e2x2-1,若f[cos(
π
2
+θ)]=1,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2+2,g(x)=4x-1的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T.
(1)若A=[1,2],求S∩T;
(2)若A=[0,m],且S⊆T,求實(shí)數(shù)m的取值范圍;
(3)若對(duì)于A中的每一個(gè)x值,都有f(x)=g(x),求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+f′(1)x2-x,則函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案