(本小題滿分12分)
已知函數(shù)(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對于任意,不等式恒成立,求實(shí)數(shù)t的取值范圍.

(1)函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是
(2)

解析試題分析:解:(Ⅰ)當(dāng)時,,
,解得;,解得
∴函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是. ……………… 5分
(Ⅱ)依題意:對于任意,不等式恒成立,
上恒成立.
,∴
當(dāng)時,;當(dāng)時,
∴函數(shù)上單調(diào)遞增;在上單調(diào)遞減.
所以函數(shù)處取得極大值,即為在上的最大值.
∴實(shí)數(shù)t的取值范圍是.                         …………………… 12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:根據(jù)導(dǎo)數(shù)的符號來確定函數(shù)單調(diào)性,以及結(jié)合單調(diào)性求解最值,進(jìn)而得到不等式的恒成立的證明。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中R .
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù), 當(dāng)時,若存在,對于任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
⑴若的極值點(diǎn),求的值;
⑵若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值;
⑶當(dāng)時,若在區(qū)間上不單調(diào),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算下列定積分(本小題滿分12分)
(1)            (2)
(3)                (4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知是函數(shù)的一個極值點(diǎn). 
(Ⅰ)求的值;
(Ⅱ)當(dāng),時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分為12分)
已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知 
⑴若的極值點(diǎn),求實(shí)數(shù)值。
⑵若對都有成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案