橢圓為定值,且的左焦點為F,直線x=m與橢圓相交于點A、B,△FAB的周長的最大值是12,則該橢圓的離心率是   
【答案】分析:先畫出圖象,結(jié)合圖象以及橢圓的定義求出△FAB的周長的表達式,進而求出何時周長最大,即可求出橢圓的離心率.
解答:解:設(shè)橢圓的右焦點E.如圖:
由橢圓的定義得:△FAB的周長為:AB+AF+BF=AB+(2a-AE)+(2a-BE)=4a+AB-AE-BE;
∵AE+BE≥AB;
∴AB-AE-BE≤0,當AB過點E時取等號;
∴△FAB的周長:AB+AF+BF=4a+AB-AE-BE≤4a;
∴△FAB的周長的最大值是4a=12⇒a=3;
∴e===
故答案:
點評:本題主要考察橢圓的簡單性質(zhì).在解決涉及到圓錐曲線上的點與焦點之間的關(guān)系的問題中,圓錐曲線的定義往往是解題的突破口.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

橢圓數(shù)學公式為定值,且數(shù)學公式的左焦點為F,直線x=m與橢圓相交于點A、B,△FAB的周長的最大值是12,則該橢圓的離心率是________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省廈門二中高二(上)數(shù)學周末練習12(文科)(解析版) 題型:填空題

橢圓為定值,且的左焦點為F,直線x=m與橢圓相交于點A、B,△FAB的周長的最大值是12,則該橢圓的離心率是   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省廈門二中高二(上)期末數(shù)學復習試卷8(文科)(解析版) 題型:填空題

橢圓為定值,且的左焦點為F,直線x=m與橢圓相交于點A、B,△FAB的周長的最大值是12,則該橢圓的離心率是   

查看答案和解析>>

科目:高中數(shù)學 來源:2013年江蘇省高考數(shù)學模擬試卷(二)(解析版) 題型:填空題

橢圓為定值,且的左焦點為F,直線x=m與橢圓相交于點A、B,△FAB的周長的最大值是12,則該橢圓的離心率是   

查看答案和解析>>

同步練習冊答案