已知函數(shù)f(x)在R奇函數(shù),當(dāng)x≥0時,f(x)=x2-2x.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)在閉區(qū)間[
1
2
,m]最大值為-
3
4
,最小值為-1,求m的取值范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意設(shè)x<0,利用已知的解析式求出f(-x)=x2+2x,再由f(x)=-f(-x),求出x<0時的解析式即可;
(2)配方,利用f(x)在閉區(qū)間[
1
2
,m]的最大值為-
3
4
最小值為-1,f(1)=-1,f(
1
2
)=-
3
4
,即可求m的取值范圍.
解答: 解:(1)由題意可得:設(shè)x<0,則-x>0;
∵當(dāng)x≥0時,f(x)=x2-2x,
∴f(-x)=x2+2x,
∵函數(shù)f(x)是奇函數(shù),
∴f(-x)=-f(x),
∴x<0時f(x)=-x2-2x,
∴f(x)=
x2-2x,x≥0
-x2-2x,x<0
;
(2)當(dāng)x≥0時,f(x)=x2-2x=(x-1)2-1,
∵f(x)在閉區(qū)間[
1
2
,m]的最大值為-
3
4
,最小值為-1,f(1)=-1,f(
1
2
)=-
3
4

∴m的取值范圍為[1,
3
2
].
點(diǎn)評:本題考查利用函數(shù)的奇偶性求函數(shù)的解析式,考查二次函數(shù)的最值,把x的范圍轉(zhuǎn)化到已知的范圍內(nèi)求對應(yīng)的解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

多面體MN-ABCD的底面ABCD為矩形,其正視圖和側(cè)視圖如圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形,則該多面體的體積是( 。
A、
16+
3
3
B、
8+6
3
3
C、
16
3
D、
20
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程﹙lgx﹚2-2mlgx+(m-
1
4
)=0有兩個大于1的根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對數(shù)的底數(shù))處的切線斜率為3.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若k∈Z,且f(x)>kx-k對任意x>1恒成立,求k的最大值;
(Ⅲ)若ak=2ln2+3ln3+…+klnk(k≥3,k∈N*),證明:
n
k=3
1
ak
<1(n≥k,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},a1+a3+a5=42,a4+a6+a8=69;等比數(shù)列{bn},b1=2,log2(b1b2b3)=6.
(Ⅰ)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)cn=an-bn,求數(shù)列{|cn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a+1)lnx+ax2+
1
2
,a∈R.
(1)當(dāng)a=-
1
3
時,求f(x)的最大值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)如果對任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且(acosB+bcosA)cos2C=c•cosC.
(1)求角C;
(2)若b=2a,△ABC的面積S=
3
2
sinA•sinB,求sinA及邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PE是⊙O的切線,切點(diǎn)為E,PAB,PCD都是⊙O的割線,且PAB經(jīng)過圓心O,過點(diǎn)P直線與直線BC,BD分別交于點(diǎn)M,N,且PE2=PM•PN.
(Ⅰ)求證D,C,M,N四點(diǎn)共圓;
(Ⅱ)求證PB⊥PN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
1+ai
2-i
(i是虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊答案