已知直線與平面平行,P是直線上的一定點,平面內(nèi)的動點B滿足:PB與直線 。那么B點軌跡是 (    )                          
A.橢圓B.雙曲線C.拋物線D.兩直線
B

試題分析:解:由題意畫圖如下,

P是直線l上的定點,有一平面α與直線l平行,平面α內(nèi)的動點B滿足PB的連線與l成30°角,因為空間中過P與l成60°角的直線組成兩個相對頂點的圓錐,α即為平行于圓錐軸的平面,點B可理解為是截面α與圓錐側(cè)面的交點,所以點B的軌跡為雙曲線.故選B.
點評:本題考查了圓錐曲線的定義,圓錐曲線就是用平面截圓錐所得的曲線,根據(jù)平面位置的不同,截面曲線分別為圓,橢圓,雙曲線和拋物線,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率為,且橢圓的右焦點與拋物線的焦點重合.

(Ⅰ)求橢圓的標準方程;
(Ⅱ)如圖,設(shè)直線與橢圓交于兩點(其中點在第一象限),且直線與定直線交于點,過作直線軸于點,試判斷直線與橢圓的公共點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形中,為坐標原點,點的坐標為,點的坐標為,分別將線段十等分,分點分別記為,連接,過軸的垂線與交于點

(1)求證:點都在同一條拋物線上,并求拋物線的方程;
(2)過點作直線與拋物線E交于不同的兩點, 若的面積之比為4:1,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的右焦點為,過點的直線交橢圓于兩點.若的中點坐標為,則的方程為  (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系xOy中,曲線y=x-6x+1與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點,且OA⊥OB,若存在,求出該直線方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示:已知過拋物線的焦點F的直線與拋物線相交于A,B兩點。

(1)求證:以AF為直徑的圓與x軸相切;
(2)設(shè)拋物線在A,B兩點處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程;
(3)設(shè)過拋物線焦點F的直線與橢圓的交點為C、D,是否存在直線使得,若存在,求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標系中,設(shè)點為圓上的任意一點,點(2,)  (),則線段長度的最小值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的一個焦點與拋物線的焦點重合,且雙曲線的離心率為,則此雙曲線的方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線:上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)直線與拋物線交于不同兩點,若滿足,證明直線恒過定點,并求出定點的坐標.
(Ⅲ)試把問題(Ⅱ)的結(jié)論推廣到任意拋物線:中,請寫出結(jié)論,不用證明.

查看答案和解析>>

同步練習(xí)冊答案