如圖,設(shè)T是直線x=-1,x=2與函數(shù)y=x2的圖象在x軸上方圍成的直角梯形區(qū)域,S是T內(nèi)函數(shù)y=x2圖象下方的點(diǎn)構(gòu)成的區(qū)域(圖中陰影部分).向T中隨機(jī)投一點(diǎn),則該點(diǎn)落入S中的概率為( )

A.
B.
C.
D.
【答案】分析:本題利用幾何概型求解.欲求恰好落在陰影范圍內(nèi)的概率,只須求出陰影范圍內(nèi)的面積與梯形的面積比即可.
解答:解:∵梯形的面積為=,
陰影部分的面積為:
S=
∴落在陰影范圍內(nèi)的概率
P==
故選B
點(diǎn)評:本題主要考查了幾何概型.如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)T是直線x=-1,x=2與函數(shù)y=x2的圖象在x軸上方圍成的直角梯形區(qū)域,S是T內(nèi)函數(shù)y=x2圖象下方的點(diǎn)構(gòu)成的區(qū)域(圖中陰影部分).向T中隨機(jī)投一點(diǎn),則該點(diǎn)落入S中的概率為( 。
A、
1
5
B、
2
5
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,其長軸長與短軸長的和等于6.
(1)求橢圓E的方程;
(2)如圖,設(shè)橢圓E的上、下頂點(diǎn)分別為A1、A2,P是橢圓上異于A1、A2的任意一點(diǎn),直線PA1、PA2分別交x軸于點(diǎn)N、M,若直線OT與過點(diǎn)M、N的圓G相切,切點(diǎn)為T.證明:線段OT的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省、金陵中學(xué)、南京外國語學(xué)校高三三校聯(lián)考數(shù)學(xué)卷 題型:解答題

A.選修4-1:幾何證明選講

 

 
(本小題滿分10分)

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD.求證:(1)l是⊙O的切線;(2)PB平分∠ABD.

B.選修4-2:矩陣與變換

(本小題滿分10分)

已知點(diǎn)A在變換:T:→=作用后,再繞原點(diǎn)逆時針旋轉(zhuǎn)90°,得到點(diǎn)B.若點(diǎn)B坐標(biāo)為(-3,4),求點(diǎn)A的坐標(biāo).

C.選修4-4:坐標(biāo)系與參數(shù)方程

(本小題滿分10分)

求曲線C1:被直線l:y=x-所截得的線段長.

D.選修4-5:不等式選講

(本小題滿分10分)

已知a、b、c是正實(shí)數(shù),求證:≥.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,設(shè)T是直線x=-1,x=2與函數(shù)y=x2的圖象在x軸上方圍成的直角梯形區(qū)域,S是T內(nèi)函數(shù)y=x2圖象下方的點(diǎn)構(gòu)成的區(qū)域(圖中陰影部分).向T中隨機(jī)投一點(diǎn),則該點(diǎn)落入S中的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊答案