分析 (1)把a=1代入,找出導(dǎo)函數(shù)為0的自變量,看在自變量左右兩側(cè)導(dǎo)函數(shù)的符號來求極值即可;
(2)轉(zhuǎn)化為求導(dǎo)函數(shù)的絕對值在x∈[1,4a]上的最大值即可.
解答 解:(1)當(dāng)a=1時,對函數(shù)f(x)求導(dǎo)數(shù),得f′(x)=3x2-6x-9.
令f′(x)=0,解得x1=-1,x2=3.
列表討論f(x),f′(x)的變化情況:
x | (-∞,-1) | -1 | (-1,3) | 3 | (3,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↑ | 極大值6 | ↓ | 極小值-26 | ↑ |
點評 本題涉及到利用導(dǎo)函數(shù)求極值.利用導(dǎo)函數(shù)求極值時,須先求導(dǎo)函數(shù)為0的根,再根據(jù)導(dǎo)函數(shù)為0的根左右兩側(cè)的符號來求極大值和極小值.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 018×2 012 | B. | 2 020×2 013 | C. | 1 009×2 012 | D. | 1 010×2 013 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com