【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為 ,乙獲勝的概率為 ,各局比賽結(jié)果相互獨(dú)立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)記X為比賽決勝出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和均值(數(shù)學(xué)期望).
【答案】
(1)解:用A表示甲在4局以內(nèi)(含4局)贏得比賽的是事件,Ak表示第k局甲獲勝,Bk表示第k局乙獲勝,
則P(Ak)= ,P(Bk)= ,k=1,2,3,4,5
P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=( )2+ ×( )2+ × ×( )2= .
(2)解:X的可能取值為2,3,4,5.
P(X=2)=P(A1A2)+P(B1B2)= ,
P(X=3)=P(B1A2A3)+P(A1B2B3)= ,
P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)= ,
P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)= = ,
或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)= ,
故分布列為:
X | 2 | 3 | 4 | 5 |
P |
E(X)=2× +3× +4× +5× = .
【解析】(1)根據(jù)概率的乘法公式,求出對(duì)應(yīng)的概率,即可得到結(jié)論.(2)利用離散型隨機(jī)變量分別求出對(duì)應(yīng)的概率,即可求X的分布列;以及均值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為的三內(nèi)角A,B,C的對(duì)邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是兩個(gè)不同的平面,是兩條不同的直線,有如下四個(gè)命題:
①若,則; ②若,則;
③若,則; ④若,則.
其中真命題為_________(填所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2分別是橢圓E:x2+ =1(0<b<1)的左、右焦點(diǎn),過點(diǎn)F1的直線交橢圓E于A、B兩點(diǎn),若|AF1|=3|F1B|,AF2⊥x軸,則橢圓E的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直圖,如右圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了130t該農(nóng)產(chǎn)品.以(單位:t,100≤≤150)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).
(Ⅰ)將T表示為的函數(shù);
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點(diǎn)O的兩條直線l1和l2 , l1與E1 , E2分別交于A1、A2兩點(diǎn),l2與E1、E2分別交于B1、B2兩點(diǎn).
(1)證明:A1B1∥A2B2;
(2)過O作直線l(異于l1 , l2)與E1、E2分別交于C1、C2兩點(diǎn).記△A1B1C1與△A2B2C2的面積分別為S1與S2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin( )(A>0,ω>0,)的部分圖象如圖所示.若橫坐標(biāo)分別為-1、1、5的三點(diǎn)M,N,P都在函數(shù)f(x)的圖象上,則sin∠MNP的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)所有高校學(xué)生進(jìn)行普通話水平測(cè)試,發(fā)現(xiàn)成績(jī)服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學(xué)生的成績(jī).
(1)計(jì)算這10名學(xué)生的成績(jī)的均值和方差;
(2)給出正態(tài)分布的數(shù)據(jù):P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
由(1)估計(jì)從全市隨機(jī)抽取一名學(xué)生的成績(jī)?cè)冢?/span>76,97)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com