如圖,正方體ABCD-A1B1C1D1的棱長為1,點M 在棱AB上,且AM=
1
3
,點P是平面ABCD上的動點,且動點P到直線A1D1的距離與點P到點M 的距離的平方差為2,則動點P的軌跡是(  )
A.圓B.拋物線C.雙曲線D.直線

如圖所示:正方體ABCD-A1B1C1D1中,
作PQ⊥AD,Q為垂足,則PQ⊥面ADD1A1,
過點Q作QR⊥D1A1,則D1A1⊥面PQR,
PR即為點P到直線A1D1的距離,
由題意可得 PR2-PQ2=RQ2=4.
又已知 PR2-PM2=4,
∴PM=PQ,
即P到點M的距離等于P到AD的距離,
根據(jù)拋物線的定義可得,點P的軌跡是拋物線,
故選 B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

過點(0,1)引直線與雙曲線x2-y2=1只有一個公共點,這樣的直線共有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點,焦點在x軸上的橢圓焦距為2,離心率為
1
2

(1)求橢圓的標準方程
(2)若直線l過點(1,2)且傾斜角為45°且與橢圓相交于A,B兩點,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設A,B∈R,A≠B且AB≠0,則方程Bx-y+A=0和
x2
B
-
y2
A
=1
在同一坐標系下的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
4
+
y2
3
=1
,直線l過點M(m,0).
(Ⅰ)若直線l交y軸于點N,當m=-1時,MN中點恰在橢圓C上,求直線l的方程;
(Ⅱ)如圖,若直線l交橢圓C于A,B兩點,當m=-4時,在x軸上是否存在點p,使得△PAB為等邊三角形?若存在,求出點p坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點P是橢圓16x2+25y2=1600上一點,且在x軸上方,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,直線PF2的斜率為-4
3
,則△PF1F2的面積為( 。
A.32
3
B.24
3
C.32
2
D.24
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1(-1,0)、F2(1,0),O是坐標原點,C的右頂點和上頂點分別為A、B,且△AOB的面積為
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(4,0)作與x軸不重合的直線l與C交于相異兩點M、N,交y軸于Q點,證明
|PQ|
|PM|
+
|PQ|
|PN|
為定值,并求這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F1,F(xiàn)2是橢圓
x2
16
+
y2
9
=1
的兩焦點,過點F2的直線交橢圓于A,B兩點,在△AF1B中,若有兩邊之和是10,則第三邊的長度為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的頂點為A1,A2,B1,B2,焦點為F1,F(xiàn)2,|A1B2|=
7
,S?A1B1A2B2=2S?B1F1B2F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線m過Q(1,1),且與橢圓相交于M,N兩點,當Q是MN的中點時,求直線m的方程.
(Ⅲ)設n為過原點的直線,l是與n垂直相交于P點且與橢圓相交于兩點A,B的直線,|
OP
|=1
,是否存在上述直線l使以AB為直徑的圓過原點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案