拋物線,其準線方程為,過準線與軸的交點做直線交拋物線于兩點.
(1)若點中點,求直線的方程;
(2)設拋物線的焦點為,當時,求的面積.

(1);(2)4.

解析試題分析:(1)首先根據(jù)準線方程求得拋物線的標準方程,然后設直線直線l的方程,并與拋物線方程聯(lián)立消去x得到關于y的二次方程,再利用韋達定理與中點坐標公式可求得m的值,進而得到直線l的方程;(2)根據(jù)條件中的垂直關系,利用A、B、F三點的坐標表示出向量,然后利用向量垂直的條件可得的值,進而可求得的面積.
試題解析:(1)∵拋物線的準線方程為,∴
∴拋物線的方程為,
顯然,直線與坐標軸不平行
∴設直線的方程為, ,
聯(lián)立直線與拋物線的方程,得
,解得 .
∵點中點,∴,即
解得 ,
,∴
,
直線方程為.
(2)焦點



,


考點:1、直線方程;2、拋物線方程;3、直線與拋物線的位置關系;4、平面向量垂直的充要條件的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知直線過點且與拋物線交于A、B兩點,以弦AB為直徑的圓恒過坐標原點O.

(1)求拋物線的標準方程;
(2)設是直線上任意一點,求證:直線QA、QM、QB的斜率依次成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于,兩點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓 的離心率為 ,點 為其下焦點,點為坐標原點,過 的直線 (其中)與橢圓 相交于兩點,且滿足:.

(1)試用  表示 ;
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知頂點是坐標原點,對稱軸是軸的拋物線經(jīng)過點
(1)求拋物線的標準方程;
(2)直線過定點,斜率為,當為何值時,直線與拋物線有公共點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知點,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(Ⅰ)當點在圓上運動時,求點的軌跡方程;
(Ⅱ)已知,是曲線上的兩點,若曲線上存在點,滿足為坐標原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓經(jīng)過如下五個點中的三個點:,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點為橢圓的左頂點,為橢圓上不同于點的兩點,若原點在的外部,且為直角三角形,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為且與雙曲線有共同焦點.
(1)求橢圓的方程;
(2)在橢圓落在第一象限的圖像上任取一點作的切線,求與坐標軸圍成的三角形的面積的最小值;
(3)設橢圓的左、右頂點分別為,過橢圓上的一點軸的垂線交軸于點,若點滿足,,連結于點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的左、右焦點分別為,橢圓的離心率為,且橢圓經(jīng)過點
(1)求橢圓C的標準方程;
(2)線段是橢圓過點的弦,且,求內切圓面積最大時實數(shù)的值.

查看答案和解析>>

同步練習冊答案