已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系.直線l的參數(shù)方程是:
x=
2
2
t+m
y=
2
2
t.
(t是參數(shù))
(1)求曲線C和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點,且|AB|=
14
,求實數(shù)m的值.
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:(1)由曲線C的極坐標方程是ρ=4cosθ,化為ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入即可得出直角坐標方程.由直線l的參數(shù)方程:
x=
2
2
t+m
y=
2
2
t.
(t是參數(shù)),消去t可得.
(2)由x2+y2-4x=0化為(x-2)2+y2=4,可得圓C的圓心C(2,0),半徑r=2.利用圓心到直線l的距離d=
r2-(
|AB|
2
)2
,和點到直線的距離可得d=
|2-0-m|
2
,即可得出.
解答: 解:(1)由曲線C的極坐標方程是ρ=4cosθ,化為ρ2=4ρcosθ,化為直角坐標方程x2+y2-4x=0.
由直線l的參數(shù)方程是:
x=
2
2
t+m
y=
2
2
t.
(t是參數(shù)),消去t可得y=x-m.
(2)由x2+y2-4x=0化為(x-2)2+y2=4,可得圓C的圓心C(2,0),半徑r=2.
∴圓心到直線l的距離d=
r2-(
|AB|
2
)2
=
2
2
,
另一方面
|2-0-m|
2
=
2
2
,
∴|m-2|=1,解得m=1或3.
點評:本題考查了把極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程、點到直線的距離公式、弦長公式,考查了推理能力和計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,acos(
π
2
-A)=bcos(
π
2
-B),判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-3x+b
3x+1+a
是奇函數(shù).
(1)求a,b的值;
(2)用函數(shù)單調性的定義證明函數(shù)f(x)在R上是減函數(shù);
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側棱垂直底面,∠ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中點.
(Ⅰ)證明:DC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比
(Ⅲ)畫出平面BDC1與平面ABC的交線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+x2+ax,a∈R.
(1)若函數(shù)f(x)在其定義域上為增函數(shù),求a的取值范圍;
(2)當a=1時,函數(shù)g(x)=
f(x)
x+1
-x在區(qū)間[t,+∞)(t∈N*)上存在極值,求t的最大值.
(參考數(shù)值:自然對數(shù)的底數(shù)e≈2.71828)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

成等差數(shù)列的三個數(shù)的和等于15,并且這三個數(shù)分別加上1,3,9后又成等比數(shù)列,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

移動公司根據(jù)市場客戶的不同需求,對某地區(qū)的手機套餐通話費提出兩種優(yōu)惠方案,兩種方案所付電話費(元)與通話時間(分鐘)之間的關系如圖所示(實線部分:MN與CD平行即直線方程y=kx+b中的斜率k相等).
(1)若通話時間為兩小時,按方案A,B各付話費多少元?
(2)方案B從400分鐘以后,每分鐘收費多少元?
(3)通話時間在什么范圍內,方案B比方案A優(yōu)惠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)計算|1+lg0.001|+
lg2
1
3
-4lg3+4
+lg6-lg0.02.
(2)化簡:27 
2
3
-2 log23×log2
1
8
+2lg(
3+
5
+
3-
5
).
(3)已知log147=a,log145=b,則用a,b表示log3528.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若三棱錐P-ABC,AP,BP,CP兩兩垂直,AP=CP=2,BP=
5
,則P到面ABC的距離是
 

查看答案和解析>>

同步練習冊答案