【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)若存在與函數(shù),的圖象都相切的直線,求的取值范圍.

【答案】1)答案見解析;(2.

【解析】

1)求的定義域,導(dǎo)數(shù),利用二次函數(shù)的性質(zhì)分類討論導(dǎo)數(shù)的正負,從而求出的單調(diào)性.2)函數(shù)的圖象上點與函數(shù)的圖象上點處切線相同,利用導(dǎo)數(shù)求切線的斜率建立關(guān)系式,求出導(dǎo)數(shù)和單調(diào)區(qū)間以及最值,運用單調(diào)性計算可求出的范圍.

1)函數(shù)的定義域為,

.

所以當(dāng)時,,上單調(diào)遞增;

當(dāng),即時,

方程的根為,.

當(dāng)時,有,,上單調(diào)遞增;

當(dāng)時,有.

+

-

+

綜上:當(dāng)時,上單調(diào)遞增,

當(dāng)時,,上單調(diào)遞增,

上單調(diào)遞減.

2)設(shè)函數(shù)的圖象上點與函數(shù)的圖象上點處切線相同,

,

,

由①②得:,

設(shè)

問題轉(zhuǎn)化為有解,

,

不妨設(shè)

則當(dāng)時,,當(dāng)時,,

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

的最小值.

只需,即

,故代入③式,得

,

,易得

,則遞增.

的解集是(01],即.

,得.

即實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等腰梯形中,,,.,交于點.沿線段折起,使得點在平面內(nèi)的投影恰好是點,如圖.

1)若點為棱上任意一點,證明:平面平面.

2)在棱上是否存在一點,使得三棱錐的體積為?若存在,確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是拋物線上的兩個不同的點,是坐標原點,若直線的斜率之積為,則下列結(jié)論正確的是(

A.

B.為直徑的圓面積的最小值為

C.直線過拋物線的焦點

D.到直線的距離不大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校數(shù)學(xué)建模小組為了研究雙層玻璃窗戶中每層玻璃厚度(每層玻璃的厚度相同)及兩層玻璃間夾空氣層厚度對保溫效果的影響,利用熱傳導(dǎo)定律得到熱傳導(dǎo)量滿足關(guān)系式,其中玻璃的熱傳導(dǎo)系數(shù)焦耳/(厘米·度),不流通、干燥空氣的熱傳導(dǎo)系數(shù)焦耳/(厘米·度),為室內(nèi)外溫度差,值越小,保溫效果越好,現(xiàn)有4種型號的雙層玻璃窗戶,具體數(shù)據(jù)如下表:

型號

每層玻璃厚度(單位:厘米)

玻璃間夾空氣層厚度(單位:厘米)

0.4

3

0.3

4

0.5

3

0.4

4

則保溫效果最好的雙層玻璃的型號是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),則下列說法正確的是( )

A.,則的圖象上存在唯一一對關(guān)于原點對稱的點

B.存在實數(shù)使得的圖象上存在兩對關(guān)于原點對稱的點

C.不存在實數(shù)使得的圖象上存在兩對關(guān)于軸對稱的點

D.的圖象上存在關(guān)于軸對稱的點,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,A1DAD1交于點EAA1AD2AB4.

1)證明:AE⊥平面ECD;

2)求點C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形中,,,,,上的點,,的中點.將沿折起到的位置,使得,如圖2

1)求證:平面平面;

2)點在線段上,當(dāng)直線與平面所成角的正弦值為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新冠病毒疫情爆發(fā)期間,口罩成為了個人的必需品.已知某藥店有4種不同類型的口罩,,,其中型口罩僅剩1只(其余3種庫存足夠).今甲、乙等5人先后在該藥店各購買了1只口罩,統(tǒng)計發(fā)現(xiàn)他們恰好購買了3種不同類型的口罩,則所有可能的購買方式共有(

A.330B.345C.360D.375

查看答案和解析>>

同步練習(xí)冊答案