分析 (1)利用等差數(shù)列的通項公式即可得出.
(2)由(1)知:${b_n}=\frac{2n}{2n-7}=1+\frac{7}{2n-7}$,利用單調性即可得出.
解答 解:(1)由題意$\left\{\begin{array}{l}{{a_3}={a_1}+2d=7}\\{{a_5}+{a_7}=2{a_1}+10d=26}\end{array}⇒\left\{\begin{array}{l}{d=2}\\{{a_1}=3}\end{array}$,
所以an=2n+1
(2)由(1)知:${b_n}=\frac{2n}{2n-7}=1+\frac{7}{2n-7}$
又因為當n=1,2,3時,數(shù)列{bn}遞減且$\frac{7}{2n-7}<0$;
當n≥4時,數(shù)列{bn}遞減且$\frac{7}{2n-7}>0$;
所以,數(shù)列{bn}的最大項為b4=8,最小項為b3=-6
點評 本題考查了等差數(shù)列的通項公式、單調性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{3}{4}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2+$\sqrt{3}$ | B. | 1 | C. | 2-$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com