已知數(shù)列{an}的通項公式為an=pn2+qn.
(1)當(dāng)p,q滿足什么條件時,數(shù)列{an}是等差數(shù)列;
(2)求證:對任意實數(shù)p、q,數(shù)列{an+1-an}是等差數(shù)列.
考點:等差關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)等差數(shù)列的定義,即可得到結(jié)論.
(2)根據(jù)等差數(shù)列的定義即可證明.
解答: 解:(1)∵an=pn2+qn.
∴若數(shù)列{an}是等差數(shù)列;
則當(dāng)n>1時,an-an-1=pn2+qn-[p(n-1)2+q(n-1)]=2pn+q-p為常數(shù),
∴必有p=0,
即當(dāng)p=0,數(shù)列{an}是等差數(shù)列;
(2)∵an=pn2+qn.
∴當(dāng)n>1時,an-an-1=pn2+qn-[p(n-1)2+q(n-1)]=2pn+q-p,
即an+1-an=2p(n+1)+q-p,
∴(an+1-an)-(an-an-1)=2p為常數(shù),
即對任意實數(shù)p、q,數(shù)列{an+1-an}是等差數(shù)列.
點評:本題主要考查等差數(shù)列的判斷,根據(jù)等差數(shù)列的定義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三個集合E={x|x=m+
1
6
,m∈Z},F(xiàn)={x|x=
n
2
-
1
3
,n∈Z},G={x|x=
p
2
+
1
6
,p∈Z},則(  )
A、E=F?G
B、E?F=G
C、E⊆F?G
D、E?F?G

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(lga+2)x+lgb滿足f(-1)=-2且對于任意x∈R,恒有f(x)≥2x成立.
(1)求實數(shù)a,b的值;
(2)不等式f(x)≥a2-4a-15恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a
2x+1
是奇函數(shù),
(1)求a值,并判斷f(x)的單調(diào)性(不需證明);
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)m取何值時,對?x總有(m2+4m-5)x2-2(m-1)x+3>0成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)長軸長為12,e=
1
2

(2)經(jīng)過點P(8,0)和Q(0,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=ax-(k+1)a-x(a>0且a≠1)的定義域為R.
(1)求實數(shù)k的值;
(2)若f(1)=1,令g(x)=a2x+a-2x-2mf(x),求實數(shù)m的取值范圍,使得g(x)>0在[1,+∞)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點,焦點在x軸上,離心率e=
1
2
,它的一個頂點恰好是拋物線x2=-12y的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C與曲線|y|=k•x(k>0)的交點為B、C,求△OBC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-e-x(x∈R),不等式et•f(2t)-mf(t)<0對于t∈(0,1)恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案