如圖,AC是圓O的直徑,點(diǎn)B在圓O上,∠BAC=30°,BM⊥AC交AC于點(diǎn)M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(Ⅰ)證明:AB⊥BF;
(Ⅱ)求三棱錐E-BMF的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,空間中直線與直線之間的位置關(guān)系
專題:計(jì)算題,證明題
分析:(Ⅰ)證明AB⊥BF,轉(zhuǎn)化成證明線面垂直,即證AB⊥平面BFC;
(Ⅱ)求三棱錐E-BMF的體積,轉(zhuǎn)化成求三棱錐B-EMF的體積.
解答: 解:(Ⅰ)證明:∵EA⊥平面ABC,F(xiàn)C∥EA,
∴FC⊥平面ABC
∵AB?平面ABC
∴FC⊥AB
又∵AC是直徑,B在圓上,
∴AB⊥BC
∴AB⊥平面BFC
又∵BF?平面BFC
∴AB⊥BF.
(Ⅱ)在△ABC中,∠BAC=30°,BM⊥AC交AC于點(diǎn)M,AC=4,
∴BM=
3
,
三角形EMF的面積S=
1
2
(3+1)×4-
1
2
×3×3-
1
2
×1×1
=3
VE-BMF=VB-EMF=
1
3
×3×
3
=
3
點(diǎn)評(píng):本題考查了線面位置關(guān)系的證明及幾何體的體積,證明線線垂直可以轉(zhuǎn)化成證明線面垂直;求三棱錐的體積關(guān)鍵是通過(guò)轉(zhuǎn)換頂點(diǎn)轉(zhuǎn)化成易求底面積和高的三棱錐的體積問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐P-ABC中,已知PA=PB,∠ABC為直角,點(diǎn)D,E分別為PB,BC的中點(diǎn).
(Ⅰ)求證:AD⊥平面PBC;
(Ⅱ)若F在線段AC上,且
AF
FC
=
1
2
,求證:AD∥平面PEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x+
p
x
(p>0為常數(shù))在(0,+∞﹚上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我校高2014級(jí)迎新晚會(huì)的舞臺(tái)天花板上有前、后兩排共4個(gè)燈架,每排2個(gè),每個(gè)燈架上安裝了5盞射燈,每盞射燈發(fā)光的概率為
1
2
.若一個(gè)燈架上至少有3盞射燈正常發(fā)光,則這個(gè)燈架不需要維修,否則需要維修.
(Ⅰ)求恰有兩個(gè)燈架需要維修的概率;
(Ⅱ)若前排每個(gè)燈架的維修費(fèi)用為100元,后排每個(gè)燈架的維修費(fèi)用為200元,記ξ為維修燈架的總費(fèi)用,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2且焦距為2
2
.點(diǎn)M為橢圓E上的一個(gè)動(dòng)點(diǎn),當(dāng)MF2垂直于x軸時(shí),恰好|MF1|:|MF2|=3:1.已知直線l與圓C:x2+y2=
4
3
相切,且與橢圓E相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)探究
OA
OB
是否為定值,若是,求出
OA
OB
的值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),x∈R,對(duì)任意x1、x2∈R,均有f(x1+x2)=f(x1)+f(x2),又x>0時(shí),f(x)<0,f(1)=a,試判斷函數(shù)f(x)在[-3,3]上是否有最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求多項(xiàng)式﹙x-1﹚-﹙x-1﹚2+﹙x-1﹚3-﹙x-1﹚4+﹙x-1﹚5的展開式中的x3的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:
x=2+3t
y=3-4t
(t為參數(shù));橢圓C1
x=2cosθ
y=4sinθ
(θ為參數(shù))
(Ⅰ)求直線l傾斜角的余弦值;
(Ⅱ)試判斷直線l與橢圓C1的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
1
2
,(1+an+1)(1-an)=2,則a2014=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案