已知圓O的弦CD與直徑AB垂直并交于點(diǎn)F,點(diǎn)E在CD上,且AE=CE.
(1)求證:CA2=CE•CD;
(2)已知CD=5,AE=3,求sin∠EAF.
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:(1)由⊙O的弦CD與直徑AB垂直于F,根據(jù)垂徑定理,易證得∠C=∠D,又由AE=CE,根據(jù)等邊對(duì)等角,可得∠C=∠CAE,即可得∠CAE=∠D,又由∠C是公共角,即可證得△CEA∽△CAD,然后由相似三角形的對(duì)應(yīng)邊成比例,證得結(jié)論;
(2)求出DE,可得EF,在Rt△AFE中,求sin∠EAF.
解答: (1)證明:在△CEA和△CAD中,
∵弦CD⊥直徑AB,
AC
=
AD
,
∴∠D=∠C,
又∵AE=EC,
∴∠CAE=∠C,
∴∠CAE=∠D,
∵∠C是公共角,
∴△CEA∽△CAD,
CA
CD
=
CE
CA
,
即CA2=CE•CD;
(2)解:∵CD=5,AE=CE=3,
∴DE=2,
∴EF=DF-DE=0.5,
在Rt△AFE中,sin∠EAF=
0.5
3
=
1
6
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、垂徑定理、等腰三角形的性質(zhì)以及三角函數(shù)的定義
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)判斷,正確的是( 。
①某校高二某兩個(gè)班的人數(shù)分別是m,n(m≠n),某次測(cè)試數(shù)學(xué)平均分分別是a,b(a≠b),則這兩個(gè)班的數(shù)學(xué)平均分為
a+b
2

②10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有a<b<c;
③從總體中抽取的樣本(x1,y2),(x2,y2),…(xn,yn),若記
.
x
=
1
n
n
i=1
xi
,
.
y
=
1
n
n
i=1
yi
,則回歸直線y=bx+a必過點(diǎn)(
.
x
,
.
y
);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.1.
A、①②③B、①③④
C、②③④D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)函數(shù){an}滿足a1=1,an+12=an(an+4)+4,n∈N*,數(shù)列{bn}滿足b1=1,bn+1=-
1
bn+1
,n∈N*
(1)求{an}的通項(xiàng)公式;
(2)證明:存在正整數(shù)k,使得對(duì)一切n∈N*有bn+k=bn;
(3)求數(shù)列{anbn}的前3n項(xiàng)和S3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
1
x
+(1-a)lnx.
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)若a≤0,討論函數(shù)求f(x)的單調(diào)性;
(Ⅲ)若關(guān)于x的方程f(x)=ax在(0,1)上有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-
1
2
2x-x2
+
x
+
2-x
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一個(gè)周期內(nèi)的圖象如圖,
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某大風(fēng)車的半徑為2m,每12s逆時(shí)針旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面0.5m.風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開始,運(yùn)動(dòng)t(s)后與地面的距離為f(t).
(1)求函數(shù)f(t)的關(guān)系式;
(2)經(jīng)過多長(zhǎng)時(shí)間A點(diǎn)離地面的距離為1.5cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
2
-
2
x
6的二項(xiàng)展開式中,x2的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α的終邊過點(diǎn)(-1,-2);
(1)求cosα及tanα的值.
(2)化簡(jiǎn)并求
sin(π-α)cos(2π-α)sin(-α+
2
)
tan(-α-π)sin(-π-α)
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案