【題目】2009四川卷文)設(shè)矩形的長(zhǎng)為,寬為,其比滿足,這種矩形給人以美感,稱為黃金矩形。黃金矩形常應(yīng)用于工藝品設(shè)計(jì)中。下面是某工藝品廠隨機(jī)抽取兩個(gè)批次的初加工矩形寬度與長(zhǎng)度的比值樣本:

甲批次:0.598 0.625 0.628 0.595 0.639

乙批次:0.618 0.613 0.592 0.622 0.620

根據(jù)上述兩個(gè)樣本來(lái)估計(jì)兩個(gè)批次的總體平均數(shù),與標(biāo)準(zhǔn)值0.618比較,正確結(jié)論是

A. 甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近

B. 乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近

C. 兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同

D. 兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度不能確定

【答案】A

【解析】甲批次的平均數(shù)為0.617,乙批次的平均數(shù)為0.613

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足| |=| |= =2,則點(diǎn)集{P| ,|λ|+|μ|≤1,λ,μ∈R}所表示的區(qū)域的面積是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為 ,乙每次投籃投中的概率為 ,且各次投籃互不影響.
(1)求甲獲勝的概率;
(2)求投籃結(jié)束時(shí)甲的投籃次數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)y=cos2x+1的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),然后向左平移1個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度,得到的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:

(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;

(Ⅱ)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來(lái)估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說(shuō)明理由。

是否需要志愿者

性別

需要

40

30

不需要

160

270

參考數(shù)據(jù):

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意xyR,總有f(x)f(y)f(xy),且當(dāng)x>0時(shí),f(x)<0f(1)=-.

(1)求證:f(x)R上的單調(diào)減函數(shù).

(2)f(x)[3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所.先采用分層抽樣的方法從這些學(xué)校中抽取30所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查,應(yīng)從小學(xué)中抽取 18 所學(xué)校,中學(xué)中抽取所學(xué)校.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的方程是).

(1)當(dāng),時(shí),求曲線圍成的區(qū)域的面積;

(2)若直線與曲線交于軸上方的兩點(diǎn),,且,求點(diǎn)到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“我將來(lái)要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬(wàn)的小孩子,附近沒(méi)有一個(gè)大人,我是說(shuō)……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無(wú)垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對(duì)的角為,中邊所對(duì)的角為,經(jīng)測(cè)量已知,.

1)霍爾頓發(fā)現(xiàn)無(wú)論多長(zhǎng),為一個(gè)定值,請(qǐng)你驗(yàn)證霍爾頓的結(jié)論,并求出這個(gè)定值;

2)霍爾頓發(fā)現(xiàn)麥田的生長(zhǎng)于土地面積的平方呈正相關(guān),記的面積分別為,為了更好地規(guī)劃麥田,請(qǐng)你幫助霍爾頓求出的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案