設(shè)函數(shù)f(x)=
2
+2
6
sinxcosx-2
2
sin2x,(x∈R)

(I)對(duì)f(x)的圖象作如下變換:先將f(x)的圖象向右平移
π
12
個(gè)單位,再將橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,求g(x)的解析式;
(II)已知0<x1
π
2
x2<π
,且g(x1)=
6
2
5
,g(x2)=2
,求tan(x1+x2)的值.
分析:(I)先減函數(shù)化簡(jiǎn)為f(x)=2
2
sin(2x+
π
6
),再利用圖象的變換規(guī)律,可得函數(shù)的解析式;
(II)根據(jù)g(x1)=
6
2
5
,g(x2)=2
,求得tanx1=
3
4
,tanx2=-1,再利用和角的正切公式,即可得到結(jié)論.
解答:解:(I)函數(shù)f(x)=
2
+2
6
sinxcosx-2
2
sin2x
=
6
sin2x+
2
cos2x
=2
2
sin(2x+
π
6

將f(x)的圖象向右平移
π
12
個(gè)單位,可得y1=2
2
sin2x,再將橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,得到函數(shù)g(x)=2
2
sinx

(II)∵g(x1)=
6
2
5
,g(x2)=2

2
2
sinx1=
6
2
5
,2
2
sinx2=2

sinx1=
3
5
sinx2=
2
2

0<x1
π
2
x2<π

cosx1=
4
5
,cosx2=-
2
2

tanx1=
3
4
,tanx2=-1
tan(x1+x2)=
3
4
-1
1+
3
4
=-
1
7
點(diǎn)評(píng):本題考查三角函數(shù)的化簡(jiǎn),考查圖象的變換,考查和角的正切公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-xx∈(-∞,1)
x2x∈[1,+∞)
若f(x)>4,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2
-x2+x+2
,對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=
f(x),f(x)≤K
K,f(x)>K
若對(duì)于函數(shù)f(x)=2
-x2+x+2
定義域內(nèi)的任意 x,恒有fK(x)=f(x),則( 。
A、K的最大值為2
2
B、K的最小值為2
2
C、K的最大值為1
D、K的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•渭南三模)設(shè)函數(shù)f(x)=
-2,x>0
x2+bx+c,x≤0
若f(-4)=f(0),f(-2)=0,則關(guān)于x的不等式f(x)≤1的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-x,x<1
log4x,   x>1
,滿足f(x)=
1
4
的x的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:向量
m
=(sinx,
3
4
),
n
=(cosx,-1)
,設(shè)函數(shù)f(x)=2(
m
+
n
)•
n

(1)求f(x)解析式;
(2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
) (x∈[0,
π
2
])
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案