有限數(shù)列,為其前n項(xiàng)和,定義的“凱森和”,若有99項(xiàng)的數(shù)列的“凱森和”為1000,則有100項(xiàng)的數(shù)列的“凱森和”為         .

991

解析試題分析:先求出有99項(xiàng)的數(shù)列的凱森和,由題意知轉(zhuǎn)化求出S1+S2+…+S99,進(jìn)而求得答案.解:A={a1,a2,…,an}的凱森和由Tn來(lái)表示,由題意知,所以S1+S2+…+S99=1000×99,數(shù)列{1,a1,a2,…,a99}的“凱森和”為:,故可知結(jié)論為991.
考點(diǎn):數(shù)列的求和
點(diǎn)評(píng):本題主要考查了數(shù)列的求和問(wèn)題,考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列滿足為常數(shù),),若,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列的首項(xiàng),其前項(xiàng)和,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭?huà)點(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類,如圖2中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作,第2個(gè)五角形數(shù)記作,第3個(gè)五角形數(shù)記作,第4個(gè)五角形數(shù)記作,…,若按此規(guī)律繼續(xù)下去,得數(shù)列,則;對(duì),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意都有,其中為數(shù)列的前項(xiàng)和.
(1)求、;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),對(duì)任意的,都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

數(shù)列{}中,,則為(  )

A.-3 B.-11 C.-5 D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若數(shù)列{an}的前n項(xiàng)和為Snan,則數(shù)列{an}的通項(xiàng)公式是an=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在數(shù)列中,如果存在非零的常數(shù),使對(duì)于任意正整數(shù)均成立,就稱數(shù)列為周期數(shù)列,其中叫做數(shù)列的周期. 已知數(shù)列滿足
,若,當(dāng)數(shù)列的周期為時(shí),則數(shù)列的前2012項(xiàng)的和為             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列滿足:(m為正整數(shù)),,則        ,m所有可能取值的集合為_(kāi)__        _______..   

查看答案和解析>>

同步練習(xí)冊(cè)答案