【題目】已知函數(shù)f(x)sinxsin xcos2x.

(1)f(x)的最小正周期和最大值;

(2)討論f(x)在()上的單調(diào)性.

【答案】(1)最小正周期π,最大值 (2)見解析

【解析】試題分析:(1)由條件利用誘導(dǎo)公式、二倍角的正弦公式、二倍角的余弦公式以及輔助角公式化簡函數(shù)的解析式,再利用正弦函數(shù)的周期公式可得函數(shù)的周期,根據(jù)三角函數(shù)的有界性求得的最大值;(2)根據(jù)可得,利用正弦函數(shù)的單調(diào)性,分類討論求由, 可求得上的單調(diào)區(qū)間.

試題解析:(1)f(x)sin(x)sin xcos2xcos xsin x (1cos 2x)

sin 2xcos 2xsin(2x),

因此f(x)的最小正周期為π,最大值為.

(2)當(dāng)x時(shí),0≤2x≤π,從而

當(dāng)0≤2x,即≤x≤時(shí),f(x)單調(diào)遞增;

當(dāng)≤2x≤π,即≤x≤時(shí),f(x)單調(diào)遞減.

綜上可知,f(x),上單調(diào)遞增;在,上單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)判斷的奇偶性并予以證明;

(2)當(dāng)時(shí),求使的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱函數(shù)為“的飽和函數(shù)”.給出下列四個(gè)函數(shù):①;②; ③;④.其中是“的飽和函數(shù)”的所有函數(shù)的序號(hào)是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(6﹣m)﹣f(m)﹣18+6m≥0,則實(shí)數(shù)m的取值范圍為(
A.[﹣3,3]
B.[3,+∞)
C.[2,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國個(gè)人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

已知張先生的月工資、薪金所得為10000元,問他當(dāng)月應(yīng)繳納多少個(gè)人所得稅?

設(shè)王先生的月工資、薪金所得為元,當(dāng)月應(yīng)繳納個(gè)人所得稅為元,寫出的函數(shù)關(guān)系式;

(3)已知王先生一月份應(yīng)繳納個(gè)人所得稅為303元,那么他當(dāng)月的個(gè)工資、薪金所得為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 的圓心為 的圓心為N,一動(dòng)圓與圓M內(nèi)切,與圓N外切.
(1)求動(dòng)圓圓心P的軌方跡方程;
(2)設(shè)A,B分別為曲線P與x軸的左右兩個(gè)交點(diǎn),過點(diǎn) 的直線 與曲線P交于C,D兩點(diǎn),若 ,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項(xiàng)為 的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn (n∈N*),且S3+a3 , S5+a5 , S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若實(shí)數(shù)a使得a>Sn+ 對(duì)任意n∈N*恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程是 以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線l與曲線C交于A,B兩點(diǎn).
(1)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(2)線段MA,MB長度分別記|MA|,|MB|,求|MA||MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是直線x=4上一動(dòng)點(diǎn),以P為圓心的圓Γ經(jīng)定點(diǎn)B(1,0),直線l是圓Γ在點(diǎn)B處的切線,過A(﹣1,0)作圓Γ的兩條切線分別與l交于E,F(xiàn)兩點(diǎn).

(1)求證:|EA|+|EB|為定值;
(2)設(shè)直線l交直線x=4于點(diǎn)Q,證明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

同步練習(xí)冊(cè)答案